Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Digitized Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/21856
Title: Dynamic Spot Diffusing Channel - A Novel Configuration for Indoor Optical Wireless Communications
Authors: Khozeimeh, Farhad
Advisor: Hranilovic, S.
Department: Electrical and Computer Engineering
Keywords: dynamic spot, diffusing, channel, novel configuration, optical, wireless, communications
Publication Date: Nov-2006
Abstract: <p> Indoor optical wireless links can potentially achieve high bitrates because there is a wide and unregulated bandwidth in the optical spectrum. Moreover, optical wireless links can be implemented using simple and inexpensive devices. However, indoor optical wireless links have their own drawbacks such as limited power due to safety issues and incapability of passing thorough opaque objects, which limit their mobility, range and bandwidth and have prevented them from being used widely in commercial systems. Therefore, there has been much effort to find new configurations for indoor optical wireless links which are able to overcome these limitations. In this thesis, a novel configuration for indoor optical wireless communication, termed the dynamic spot diffusing (DSD) channel, is proposed. In the DSD system, the transmitter sends optical signals to a small moving area on the ceiling termed a spot. The receiver receives reflections of optical signal from the spot when spot is in field of view of the receiver. This configuration is shown to achieve high bitrates and provide a good deal of mobility for users inside the room. In this work, a theoretical model for the DSD channel is proposed and the DSD channel capacity is discussed and computed. Furthermore, the DSD system design is explained and design issues are discussed in order to approach capacity. Finally, using computer simulations, achievable rates inside a room are computed and shown to be close to calculated channel capacity.</p>
Description: Some pages are blank, but are kept to satisfy the page count of the thesis.
URI: http://hdl.handle.net/11375/21856
Appears in Collections:Digitized Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Khozeimeh_Farhad_2006Nov_Masters..pdf
Open Access
11.39 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue