Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Digitized Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/21789
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorHiggs, Paul-
dc.contributor.authorJia, Wenli-
dc.date.accessioned2017-07-28T13:02:39Z-
dc.date.available2017-07-28T13:02:39Z-
dc.date.issued2007-12-
dc.identifier.urihttp://hdl.handle.net/11375/21789-
dc.description.abstract<p> Three pieces of work are contained in this thesis. OGRe is a relational database that stores mitochondrial genomes of animals. The database has been operational for approximately five years and the number of genomes in the database has expanded to over 1000 in this period. However, sometimes, new genomes can not be added to the database because of small errors in the source ffies. Several improvements to the update method and the organizational structure of OGRe have been done, which are presented in the first part of this thesis. </p> <p> The second part of this thesis is a study on codon usage in mitochondrial genomes of mammals and fish. Codon usage bias can be caused by mutation and translational selection. In this study, we use some statistical tests and likelihood-based tests to determine which factors are most important in causing codon bias in mitochondrial genomes of mammals and fish. It is found that codon usage patterns seem to be determined principally by complex context-dependent mutational effects. </p> <p> The third part of this thesis is a phylogenetic study of 159 avian species obtained using mitochondrial rRNA sequences that were provided by Dr. van Tuinen. In this study, two methods are used: one considers sites of sequences as independently evolving; the other includes the secondary structure of rRNAs. Unfortunately, the amount of information in the rRNA sequences seems to be insufficient to determine the whole phylogeny of birds. However, our results make it clear that several traditionally defined orders are polyphyletic and therefore need to be redefined. </p>en_US
dc.language.isoenen_US
dc.subjectcodonen_US
dc.subjectmolecular phylogeneticsen_US
dc.subjectmitochondrial genomesen_US
dc.subjectanimalen_US
dc.titleStudies of Codon Usage and Molecular Phylogenetics Using Mitochondrial Genomesen_US
dc.contributor.departmentComputational Engineering and Scienceen_US
dc.description.degreetypeThesisen_US
dc.description.degreeMaster of Science (MSc)en_US
Appears in Collections:Digitized Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Jia_Wenli_2007Dec_Masters.pdf.pdf
Open Access
6.87 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue