Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Digitized Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/21731
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorBlimkie, Cameron J.R.-
dc.contributor.authorAllin, Trevor G.-
dc.date.accessioned2017-07-13T18:00:34Z-
dc.date.available2017-07-13T18:00:34Z-
dc.date.issued2007-11-
dc.identifier.urihttp://hdl.handle.net/11375/21731-
dc.description.abstract<p> The anaerobic-to-aerobic power ratio is a useful tool to evaluate the strengths and weaknesses of both the aerobic and anaerobic energy systems. The traditional method of calculation has shown this ratio to increase with age in children and to plateau by late adolescence or early adulthood. However, by using the traditional approach, the aerobic component of the ratio is likely highly influenced by anaerobic sources and therefore, may not demonstrate the true proportional changes observed in the respective physiological capacities comprising this ratio with age through childhood and adolescence. The purpose of this study was to examine the age-related development of the power ratio using two new approaches. The lactate threshold (LT) and ventilatory anaerobic threshold (VAT) were identified in 31 competitive male hockey players ranging from 10 to 21 years of age and compared across three discrete age groups. Peak mechanical anaerobic power was obtained from a Wingate test (WAnT) and incorporated into the numerator of the power ratio, while peak mechanical aerobic power was obtained from a modified McMaster all-out progressive test and included into the denominator of the ratio. Mechanical power at the LT and VAT were also identified and integrated into the denominator of the power ratio and results compared to the traditional approach to identify similarities or differences in developmental trends with age. Furthermore, the reliability of the traditional, LT and VAT approaches was examined with retests of six subjects using intra-class correlation analysis and Method Error analysis. When power ratio approaches were compared among discrete age groups, significant differences (P≤0.05) were found between the youngest and oldest age groups for each of the three approaches. Notwithstanding the trend for progressive increases with advancing age group for all approaches, significant correlations with age were only found for the traditional approach (r=0.36). Finally, the VAT approach was the most reliable (r=0.95; ME=0.13) while the LT and traditional approaches demonstrated strong but non-significant test-retest correlations. Results of this study suggest that the LT and VAT approaches may theoretically be more accurate methods of measuring the power ratio than the traditional approach, as there is likely less anaerobic contribution to the denominator of the ratio. Each of the new approaches demonstrates expected age-related trends, and notwithstanding methodological and sample limitations, the VAT in particular, appears to be a more reliable and accurate means of assessing the power ratio compared to the traditional or LT approach.</p>en_US
dc.language.isoen_USen_US
dc.subjectalternative approaches, anaerobic-aerobic, power ratio, age related, changes, childhood, adulthooden_US
dc.titleAlternative Approaches to Assessing the Anaerobic-Aerobic Power Ratio; Age Related Changes from Childhood to Early Adulthooden_US
dc.typeThesisen_US
dc.contributor.departmentKinesiologyen_US
dc.description.degreetypeThesisen_US
dc.description.degreeMaster of Science (MSc)en_US
Appears in Collections:Digitized Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Allin_Trevor_G._2007Nov_Masters..pdf
Open Access
5.01 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue