Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Digitized Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/21658
Title: Development of an Acute Biotic Ligand Model for Ni Toxicity to Daphnia pulex in Soft Water: Effects of Ca, Mg, Na, K, Cl, pH and Dissolved Organic Matter
Authors: Kozlova, Tatiana A.
Advisor: Wood, Chris M.
McGeer, Jim C.
Department: Biology
Keywords: acute biotic ligand model, Ni toxicity, Daphnia pulex, soft water, alkalinity, dissolved organic matter, NOM
Publication Date: Sep-2007
Abstract: <p> In this study the influence of several water chemistry parameters on the toxicity of Ni to Daphnia pulex in soft water were tested. A reconstituted soft water (pH 7.8, hardness 31.5 mg/L CaCO3) was used as the basis for culture and testing. Daphnia pulex was chosen as a typical cladoceran, one which can be acclimated to very soft water. An understanding of the influence of water chemistry on Ni toxicity in soft water is relevant because metals have higher bioavailability in soft water. The 48h EC50 in the reconstituted soft water (RSW) was 974 μg/L (16 μM) dissolved Ni (95%CI 830- 1081 μg/L). The following factors were examined for their potential for modifying Ni toxicity: Ca, Mg, Na, K, Cl, pH (3 different approaches used) and natural organic matter (NOM, 2 sources tested). Both Ca and Mg protected against Ni toxicity and the relative effect was greater for Ca. Varying the concentrations of Na, Cl or K did not alter the toxicity of Ni. Tests at different pH showed that as pH increased, Ni toxicity decreased. When the test solution pH was adjusted with the organic buffer 3-morpholinepropanesulfonic acid, there was a clear correlation between increasing pH and increasing EC50. The pH tests using bicarbonate to adjust pH did not show this relationship as clearly. Both types of NOM showed a protective effect on Ni toxicity with Nordic Reservoir NOM having a 4 fold greater effect than that of Suwannee River NOM. This research illustrated that the effect of alterations in water chemistry were generally as predicted within the context of the biotic ligand model (BLM) approach. The data provide the information required to develop a BLM for the acute effects of Ni in soft water.</p>
URI: http://hdl.handle.net/11375/21658
Appears in Collections:Digitized Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Kozlova_Tatiana_A._2007Sept_Masters..pdf
Open Access
2.18 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue