Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Digitized Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/21644
Title: Elucidation of microbial carbon cycling in contaminated environments using compound specific isotope analysis
Authors: Cowie, Benjamin
Advisor: Slater, Gregory
Department: Geography and Earth Sciences
Keywords: Elucidation;microbial;carbon cycling;contaminated environments
Publication Date: Sep-2008
Abstract: The development of novel bioremediation systems has widespread benefits for human health and natural ecosystems. Optimization of such systems is only possible with a thorough understanding of the processes that drive bioremediation. This thesis developed novel understanding of carbon sources and cycling relationships for microbial communities that are integral in controlling contaminant fate in two contaminated environments. In the first case (Chapter 2), biodegradation in the soil microbial community was determined to be the primary pathway for recalcitrant petroleum pollutant removal. Microbial uptake and metabolism of petroleum hydrocarbons was conclusively demonstrated via 14C analysis of their PLFA biomarkers. This microbial community was the most 14C depleted bacterial system detected in an environmental system to date. In addition, complete mineralization of petroleum carbon was demonstrated with 14C analysis of soil COz. The second paper (Chapter 3) identified unique Phospholipid Fatty Acid (PLFA) biomarkers and stable carbon isotopic fractionation patterns for heterotrophic and autotrophic bacterial communities of an acid mine drainage (AMD) system. The characteristic isotopic fractionations observed during biosynthesis of PLF A biomarkers in autotrophic versus heterotrophic metabolic pathways provided the basis for a model capable of elucidating the relative roles of these members of the microbial community in the environment. The major implications of the knowledge developed in this thesis, are two new methods to identify microbial carbon cycling pathways and processes in contaminated environments. These advances may lead to new methods for mitigating the effects of contamination in environmental systems through better understanding of the microbial processes at the contaminated sites.
URI: http://hdl.handle.net/11375/21644
Appears in Collections:Digitized Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Cowie_Benjamin_R_2008Sept_Masters.pdf
Open Access
2.58 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue