Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Digitized Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/21626
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorCoombes, Brian K.-
dc.contributor.authorWong, Christine Elizabeth-
dc.date.accessioned2017-06-22T14:20:47Z-
dc.date.available2017-06-22T14:20:47Z-
dc.date.issued2008-09-
dc.identifier.urihttp://hdl.handle.net/11375/21626-
dc.description.abstractSalmonella is a Gram-negative intracellular pathogen that causes gastroenteritis and typhoid fever in humans. Salmonella can survive and replicate within host cells and has adapted several mechanisms to evade host immune defenses. The innate immune system plays an important role as a first-line of defense against pathogens such as Salmonella, and is mediated in part by toll-like receptors (TLRs). TLRs recognize fundamental components of pathogenic microorganisms and activation of TLRs leads to downstream signaling cascades eventually resulting in the expression of pro-inflammatory cytokines (4) and also has a role in activating adaptive immunity through presentation of antigens to lymphocytes (86). There are several lines of evidence that suggest that TLR activation may have therapeutic potential in therapies against infectious disease and several TLR agonists have been shown to protect against both bacterial and viral infection in mice (7; 8; 38; 66; 75; 84; 89; 121). To understand how TLR-agonist treatment of host cells affects Salmonella pathogenesis, RAW 264.7 murine macrophages were treated with the TLR agonists liposaccharide (LPS), poly(I:C), peptidoglycan, and CpG-ODN. Treatment of macrophages with all TLR-agonists results in increased phagocytosis of Salmonella compared to control-treated macrophages. These increases in phagocytic activity, however, do not enhance macrophage anti-microbial activity, since Salmonella infection of TLR-treated macrophages results in increased intracellular replication compared to control-treated cells. Infection with Salmonella mutants indicates that increased intracellular replication of Salmonella in TLR-treated macrophages is dependent on a functional SPI-2 type III secretion system. This also indicates that there was not a generalized defect in macrophage anti-bacterial function. These data exemplify how interactions between macrophage defense mechanisms and bacterial virulence factors can result in evasion of the innate immune response. Studying how TLR-agonist treatment affects Salmonella pathogenesis will give us a better understanding of the host-pathogen relationship and may provide insight into novel strategies to fight intracellular microorganisms.en_US
dc.language.isoen_USen_US
dc.subjectSalmonella, bacterial pathogenesis, macrophage, toll-like receptor, innate immunity, infectionen_US
dc.titleThe Role of Toll-Like Receptor Agonist Treatment on Salmonella Infection in Macrophagesen_US
dc.typeThesisen_US
dc.contributor.departmentBiochemistry and Biomedical Sciencesen_US
dc.description.degreetypeThesisen_US
dc.description.degreeMaster of Science (MSc)en_US
Appears in Collections:Digitized Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Wong_Christine_E._2008Sept_Masters..pdf
Open Access
6.3 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue