Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Digitized Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/21620
Title: Determination of O-glycosylation sites of β-Cantenin
Authors: Grubac, Tihana
Advisor: Persad, Sujata
Department: Biochemistry and Biomedical Sciences
Keywords: 0-glycosylation;dynamic posttranslational;posttranslational modifications;eukaryotic proteins
Publication Date: Aug-2008
Abstract: Cells respond to their environment through dynamic posttranslational modification of their existing proteins. There are more than 20 posttranslational modifications that occur on eukaryotic proteins. Several of these modifications, with phosphorylation being the hallmark, participate in signal transduction. Generally, glycosylation is not thought to participate directly in signaling. Complex N-and 0-linked glycosylation occurs on membrane-bound or secreted proteins that are synthesized in the endoplasmic reticulum and Golgi apparatus. The lumenal or extracellular localization ofthese glycans restricts their potential for dynamic responsiveness to signals. In contrast, 0-GlcNAc is a simple monosaccharide modification that is abundant on serine or threonine residues ofnucleocytoplasmic proteins. An 0-GlcNAc site consensus motif has not yet been identified. However, many attachment sites are identical to those used by serine/threonine) kinases, and a neural network program has been developed to predict 0GlcNAc sites. The dynamic glycosylation of serine or threonine residues on nuclear and cytosolic proteins by 0-linked beta-N-acetylglucosamine (0-GlcNAc) is abundant in all multicellular eukaryotes. On several proteins, 0-GlcNAc and 0-phosphate alternatively occupy the same or adjacent sites, leading to the hypothesis that one function of this saccharide is to transiently block phosphorylation. Many proteins have been identified that carry this modification, including transcription factors, cytoskeletal proteins, nuclear pore proteins, oncogene products, and tumor suppressors. 0-GlcNAc appears to modify a large number of nucleocytoplasmic proteins· One of important regulatory proteins on which this project concentrates is β-catenin. Here, we examined where does this type ofposttranslational modification takes place on the protein. Our results indicated that P-catenin is 0-glycosylated on both the N-terminus and Cterminus, but not at the ARMADILLO segment. Further, we show that the known phosphorylation sites located at theN-terminal "destruction box" of this protein are not involved in 0-glycosylation. Furthermore, we demonstrated that the threonines adjacent to phosphorylation-site Threonin41 are not essential in 0-glycosylation process. In addition, treatment ofprostate cancer lines with PUGNAc, a non-cytotoxic reversible inhibitor ofOGlcNAcase, caused a decrease in the expression oftransfected P-catenin in the nucleus with increasing cellular 0-glycosylation ofthe protein suggesting that 0-glycosylation was hindering P-catenin's nuclear translocation. Additional studies showed that 0-glycosylation of P-catenin decreased transcriptional activity of a TopFlash reporter plasmid. In summary, our results show that P-catenin is 0-glycosylated on theN-and C-terminus, but not on ARMADILLO segment, and that phosphorylation sites are not the critical for 0-glycosylation. Furthermore, our data show that 0-glycosylation of P-catenin may represent a novel mechanism important in the regulation of the nuclear localization and transcriptional activity of P-catenin.
URI: http://hdl.handle.net/11375/21620
Appears in Collections:Digitized Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Grubac_Tihana_2008Aug_Masters.pdf
Open Access
11.26 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue