Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/21485
Title: Characterization of the Activation Mechanism of Bax
Authors: Kale, Justin
Advisor: Andrews, David
Department: Biochemistry and Biomedical Sciences
Keywords: Bax;Apoptosis;Bcl-2 proteins;Bcl-XL;Biochemistry;Biophysics;FRET;Fluorescence Spectroscopy;Cancer;AKT
Publication Date: 2017
Abstract: Mitochondrial outer membrane permeabilization (MOMP) is regulated by protein-protein and protein-membrane interactions between Bcl-2 family proteins. These interactions are governed by the concentrations and relative binding affinities of the proteins for each other. These affinities are altered by conformation changes of Bcl-2 family proteins resulting from interactions with each other and with membranes. How Bcl-2 proteins transition into and out of the conformations that controls their functions, and ultimately the fate of the cell, is not well understood. Here, kinetic analysis of the pore-forming Bcl-2 family member, Bax, revealed that Bax undergoes a conformational rearrangement through at least one structurally distinct intermediate that is a necessary precursor to pore formation. We discover that four cancer-associated Bax point mutants are trapped in the intermediate state, suggesting that transitions into and out of this intermediate can be modulated independently with consequences for the execution of apoptosis. Furthermore we report that the conformation changes Bax undergoes can be regulated by phosphorylation of Bax on residue S184 by the pro-survival kinase, Akt. Phosphorylation converts Bax into an anti-apoptotic protein that functions in a dominant-negative fashion. Bioinformatics revealed that in human cancers, higher levels of Bax are positively associated with high levels of PI3K/AKT pathway genes representing an added mechanism for cancer cells to evade apoptosis. Additionally we studied the interactions between Bax, the anti-apoptotic protein Bcl-XL, the sensitizer BH3 protein Bad and the BH3 activator protein Bid. We uncover a new mechanism of apoptosis regulation whereby Bad binds to one monomer of a Bcl-XL dimer eliciting an activating conformation change in a tBid bound to the other monomer of the Bcl-XL dimer. This allows Bad to function as a non-competitive inhibitor of Bcl-XL, and represents a novel mechanism that significantly enhances the potency of Bad to elicit apoptosis.
URI: http://hdl.handle.net/11375/21485
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Kale_Justin_H_2017April_PhD.pdf
Access is allowed from: 2019-04-04
7.27 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue