Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/21482
Title: Injectable Interpenetrating Network Hydrogels for Biomedical Applications
Authors: Gilbert, Trevor
Advisor: Hoare, Todd
Department: Chemical Engineering
Keywords: Hydrogel;Interpenetrating network;PolyNIPAM;PVP;Injectable;Biomaterials
Publication Date: 2017
Abstract: Interpenetrating polymer networks (IPN’s) consist of two overlapping cross-linked networks that are not bonded to each other. Hydrogel IPN’s are of application interest due to properties such as mechanical reinforcement, modulated drug release and biodegradation kinetics, dual polymer activities in vivo, and novel nanostructured morphologies. Prior IPN hydrogels reported in the literature either required surgical implantation (disadvantageous for several reasons) or were polymerized in situ (limited to a small subset of biologically safe chemistries). Alternatively, we formed IPN’s using a mixing injector to deliver orthogonally reactive functionalized prepolymer solutions that gel upon contact. Specifically, we use hydrazone chemistry to gel a thermosensitive poly(N-isopropylacrylamide) (PNIPAM) network and kinetically orthogonal thiosuccinimide or disulfide chemistry to cross-link a second network of hydrophilic poly(vinylpyrrolidone) (PVP). The resulting IPN’s preserve the thermoresponsive properties of the PNIPAM constituent but exhibit slower, smaller, and more reversible transitions due to entanglement with the highly hydrophilic PVP network (potentially useful to reduce the problem of burst release in thermoresponsive drug delivery systems). Mechanical reinforcement was evidenced by the increased shear storage modulus of IPN composites relative to the sum of the individual component moduli, particularly so in IPN’s employing the thiosuccinimide-cross-linked PVP. The nanostructure of the IPN hydrogels was further studied using small angle neutron scattering with contrast matching, and was found to combine features characteristic to each single network component (PNIPAM-rich static domains embedded in PVP-rich fractal clusters). However, our results suggest some slight changes to their scattering profiles, indicative of partial mixing or influence of each network structure upon the other. Corroborating investigations with single-molecule super-resolution fluorescence microscopy, operating at a slightly larger length scale, show the formation of separate populations of mixed and individual domains or clusters of each polymer type. These properties suggest such injectable IPN’s for further investigation as prospective biomaterials.
URI: http://hdl.handle.net/11375/21482
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Gilbert_Trevor_W_finalsubmission2017April_PhD.pdf
Access is allowed from: 2018-04-07
9.05 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue