Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/21472
Title: Optimizing the large-scale production of Saw1 and the Saw1-Rad1-Rad10 nuclease complex for structural studies
Authors: Rashev, Margarita
Advisor: Guarné, Alba
Department: Biochemistry and Biomedical Sciences
Keywords: DNA repair;Recombinant protein expression and purification;Single strand annealing;structure selective nuclease
Publication Date: 2017
Abstract: Yeast Rad1-Rad10 is a structure specific nuclease that processes branched double-strand break (DSB) repair intermediates; the persistence of which can impede normal DNA metabolism. The single strand annealing (SSA) mechanism of DSB repair acts when homologous repeats flank both sides of the DSB. End resection from the 5′ ends of the break exposes complementary sequences at the flanking repeats, which are annealed to form 3′ non-homologous flap structures. Saw1 recruits Rad1-Rad10 recruits to these 3′ non-homologous flaps, where Rad1-Rad10 incises the DNA and removes the flap. Saw1 has affinity towards branched DNA structures and forms a stable complex with Rad1-Rad10. The mechanism of both structure specific recruitment and nucleolytic activity of the Saw1-Rad1-Rad10 complex is currently unknown. To study this nuclease complex, we need to produce large quantities of pure, stable, and active recombinant protein. Using dynamic light scattering (DLS) and differential scanning fluorimetry (DSF)-based high throughput thermal stability assays, we have developed a method for large-scale production of recombinant Saw1. This optimized method has increased the stability and yield of protein, thereby allowing for future biochemical investigation of Saw1. Similarly, we have optimized the large-scale production of the higher molecular-weight complex (Saw1-Rad1-Rad10) and improved the homogeneity of the recombinant complex. We have also biochemically characterized the minimal branched DNA substrates for both Saw1 and Saw1-Rad1-Rad10. This work allows for biochemical investigation into the molecular mechanism of eukaryotic 3′ non-homologous flap removal during SSA.
URI: http://hdl.handle.net/11375/21472
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
rashev_margarita_a_finalsubmission2017April_MSc.pdf
Access is allowed from: 2018-04-28
8.9 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue