Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Digitized Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/21416
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorHaugen, Harold K.-
dc.contributor.authorDoyle, Benjamin A. L.-
dc.date.accessioned2017-05-11T15:02:52Z-
dc.date.available2017-05-11T15:02:52Z-
dc.date.issued2005-
dc.identifier.urihttp://hdl.handle.net/11375/21416-
dc.description.abstract<p> This thesis presents a study of diagnostics of pulsed laser systems. Two simple and cost effective devices are constructed that measure common spatio-temporal distortions. The first is a spectrally-resolved knife-edge (SRKE) for spatially and spectrally resolving a laser beam, which enables spatio-temporal distortions to be measured. The second is an interferometric autocorrelation taken with a 2-photon diode. A lens is used to focus light from the entire cross section of the beam onto the diode. By scanning the diode through the focus, the effects of pulse-front-tilt on focused beam pulse durations can be measured. These techniques are compared with current theoretical models, and with each other, to establish their reliability and practicality, as well as the reliability of the commercial techniques. SRKE is found to be highly sensitive to spatial and angular dispersion, and also able to measure the frequency gradient, although not as precisely. Interferometric autocorrelation is only able to resolve effects on duration. It can detect the presence of significant spatio-temporal distortion, but several scans must be taken as a function of distance from the lens, through the focus.</p> <p> A commercially built GRENOUILLE was also tested on pulses compressed with a hollow-capillary-prism pulse compressor. Compression of 800 nm, 50 fs pulses to less than 19 fs was achieved with an overall transmission efficiency of 33%. With further work, efficiency could be increased, and pulse duration decreased.</p>en_US
dc.language.isoen_USen_US
dc.subjectcharacterization, pulse front tilt, spatial dispersion, 800 nm, femtosecond lasers, distortionsen_US
dc.titleThe Characterization of Pulse Front Tilt and Spatial Dispersion in 800 NM Femtosecond Lasersen_US
dc.typeThesisen_US
dc.contributor.departmentPhysicsen_US
dc.description.degreetypeThesisen_US
dc.description.degreeMaster of Science (MSc)en_US
Appears in Collections:Digitized Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Doyle_Benjamin_A._2005_Masters..pdf
Open Access
8.66 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue