Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Digitized Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/21266
Title: Models of computability of partial functions on the reals
Authors: Fu, Ming
Advisor: Zucker, Jeffery
Department: Computing and Software
Keywords: computability;model;partial functions;reals
Publication Date: Oct-2007
Abstract: <p> Various models of computability of partial functions f on the real numbers are studied: two abstract, based on approximable computation w.r.t high level programming languages; two concrete, based on computable tracking functions on the rationals; and two based on polynomial approximation. It is shown that these six models are equivalent, under the assumptions: (1) the domain of f is a union of an effective sequence of rational open intervals, and (2) f is effectively locally uniformly continuous. This includes the well-known functions of elementary real analysis (rational, exponential, trigonometric, etc., and their inverses) and generalises a previously know equivalence result for total functions on the reals. </p>
URI: http://hdl.handle.net/11375/21266
Appears in Collections:Digitized Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Fu_Ming_Q_2007Oct_Masters.pdf
Open Access
1.53 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue