Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/21065
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorMcNicholas, Paul-
dc.contributor.authorWong, Monica-
dc.date.accessioned2017-02-06T20:19:42Z-
dc.date.available2017-02-06T20:19:42Z-
dc.date.issued2017-
dc.identifier.urihttp://hdl.handle.net/11375/21065-
dc.description.abstractCluster analysis identifies homogeneous groups that are relevant within a population. In model-based clustering, group membership is estimated using a parametric finite mixture model, commonly the mathematically tractable Gaussian mixture model. One-way clustering methods can be restrictive in cases where there are suspected relationships between the variables in each component, leading to the idea of biclustering, which refers to clustering both observations and variables simultaneously. When the relationships between the variables are known, biclustering becomes one-way supervised. To this end, this thesis focuses on a novel one-way supervised biclustering family based on the Gaussian mixture model. In cases where biclustering may be overestimating the number of components in the data, a model averaging technique utilizing Occam's window is applied to produce better clustering results. Automatic outlier detection is introduced into the biclustering family using mixtures of contaminated Gaussian mixture models. Algorithms for model-fitting and parameter estimation are presented for the techniques described in this thesis, and simulation and real data studies are used to assess their performance.en_US
dc.language.isoenen_US
dc.subjectBiclusteringen_US
dc.subjectOne-way supervisionen_US
dc.subjectFinite mixture modelsen_US
dc.subjectModel-based clusteringen_US
dc.titleTopics in One-Way Supervised Biclustering Using Gaussian Mixture Modelsen_US
dc.typeThesisen_US
dc.contributor.departmentMathematics and Statisticsen_US
dc.description.degreetypeThesisen_US
dc.description.degreeDoctor of Philosophy (PhD)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Wong_Monica_HT_201702_PhD.pdf
Open Access
1.25 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue