Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/20661
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorTodd, Terry-
dc.contributor.authorHassanein, Hanan-
dc.date.accessioned2016-10-05T20:03:49Z-
dc.date.available2016-10-05T20:03:49Z-
dc.date.issued2016-
dc.identifier.urihttp://hdl.handle.net/11375/20661-
dc.description.abstractRadio spectrum has become increasingly scarce due to the proliferation of new wireless communication services. This problem has been exacerbated by fixed bandwidth licensing policies that often lead to spectral underutilization. Cognitive radio networks (CRN) can address this issue using flexible spectrum management that permits unlicensed (secondary) users to access the licensed spectrum. Supporting real-time quality-of-service (QoS) in CRNs however, is very challenging, due to the random spectrum availability induced by the licensed (primary) user activity. This thesis considers the problem of real-time voice transmission in CRNs with an emphasis on secondary network ``friendliness''. Friendliness is measured by the secondary real-time voice capacity, defined as the number of connections that can be supported, subject to typical QoS constraints. The constant bit rate (CBR) air interface case is first assumed. An offline scheduler that maximizes friendliness is derived using an integer linear program (ILP) that can be solved using a minimum cost flow graph construction. Two online primary scheduling algorithms are then introduced. The first algorithm is based on shaping the primary spectral hole patterns subject to primary QoS constraints. The second applies real-time scheduling to both primary traffic and virtual secondary calls. The online scheduling algorithms are found to perform well compared to the friendliness upper bound. Extensive simulations of the primary friendly schedulers show the achievable secondary voice capacity for a variety of parameters compared to non-friendly primary scheduling. The thesis then considers the variable bit rate (VBR) air interface option for primary transmissions. Offline and online approaches are taken to generate a primary VBR traffic schedule that is friendly to secondary voice calls. The online VBR schedulers are found to perform well compared to the friendliness upper bound. Simulation results are presented that show the effect of the primary traffic load and primary network delay tolerance on the primary network friendliness level towards potential secondary voice traffic. Finally, secondary user friendliness is considered from an infrastructure deployment point of view. A cooperative framework is proposed, which allows the primary traffic to be relayed by helper nodes using decode-and-forward (DF) relaying. This approach decreases the primary traffic channel utilization, which, in turn, increases the capacity available to potential secondary users. A relay selection optimization problem is first formulated that minimizes the primary channel utilization. A greedy algorithm that assigns relay nodes to primary data flows is introduced and found to perform well compared to the optimum bound. Results are presented that show the primary network friendliness for different levels of primary channel utilization.en_US
dc.language.isoenen_US
dc.subjectQuality of Serviceen_US
dc.subjectScheduling Algorithmsen_US
dc.subjectCognitive Radio Networks (CRN)en_US
dc.subjectReal-time Systemsen_US
dc.subjectOpportunistic Spectrum Access (OSA)en_US
dc.subjectVoIP Capacityen_US
dc.subjectSecondary Networksen_US
dc.subjectInteger Linear Program (ILP)en_US
dc.subjectSecondary Friendlinessen_US
dc.subjectRelay Placementen_US
dc.titleVoice Capacity in Opportunistic Spectrum Access Networks with Friendly Schedulingen_US
dc.typeThesisen_US
dc.contributor.departmentElectrical and Computer Engineeringen_US
dc.description.degreetypeDissertationen_US
dc.description.degreeDoctor of Philosophy (PhD)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Hassanein_Hanan_S_2016Sept_PhD.pdf
Open Access
1.8 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue