Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/20606
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorMaclachlan, John C.-
dc.contributor.advisorEyles, Carolyn H.-
dc.contributor.authorLee, Rebecca E.-
dc.date.accessioned2016-10-05T18:44:55Z-
dc.date.available2016-10-05T18:44:55Z-
dc.date.issued2016-
dc.identifier.urihttp://hdl.handle.net/11375/20606-
dc.description.abstractLandsystem analysis is a commonly applied methodology which focuses on process-form relationships when applied in glacial environments. It can be used to understand and recreate the geomorphological evolution of glacial deposits from modern and ancient sediments. The purpose of this study is to examine the forefields of three closely located outlet glaciers of the Vatnajökull Ice Cap in southeast Iceland to determine the factors affecting the landsystems of these glaciers. A combination of digital based methods and field work focusing on geomorphology and sedimentology were used to define the landsystems. A classification code and associated symbology was used in this study to create consistency of landsystem analysis and can be used in future similar studies of glacial environments. The three glaciers, Morsárjökull, Skaftafellsjökull and Svínafellsjökull were chosen due to their shared source and close proximity, lying within adjacent valleys. The historical changes of the three glaciers have been well documented with aerial photographs, historical maps and glacier margin measurements. LiDAR were used to interpolate 2 m digital elevation models (DEM) of the three glacier forefields. These glaciers have varying topography, bedrock type and ice distribution (hypsometry, equilibrium line altitude (ELA)) which impacts the deposition at the glacier margin. The forefields of Morsárjökull and Skaftafellsjökull exhibit many similarities in the distribution and scale of landforms similar to the characteristics of the established active temperate landsystem commonly found in Iceland. However, the forefield of Svínafellsjökull has many differences compared to Skaftafellsjökull and Morsárjökull in the scale, type and distribution of landforms and sediments. Bedrock type, hypsometry and glacial debris content are major factors that influence differences in these landsystems. These three forefields may be used as analogues to enhance understanding of paleoenvironmental conditions that existed along the southern margin of Pleistocene glaciers that covered much of northern North America and Europe in the past.en_US
dc.language.isoenen_US
dc.subjectGlacial Geomorphologyen_US
dc.subjectGlacial Sedimentologyen_US
dc.subjectLandsystem Analyisen_US
dc.titleLandsystem analysis of three outlet glaciers, southeast Icelanden_US
dc.typeThesisen_US
dc.contributor.departmentEarth Sciencesen_US
dc.description.degreetypeThesisen_US
dc.description.degreeMaster of Science (MSc)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Lee_Rebecca_E_2016Sept_M.Sc.pdf
Open Access
5.3 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue