Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/20469
Title: TECHNO-ECONOMIC COMPARISON OF ACETONE-BUTANOL-ETHANOL FERMENTATION USING VARIOUS EXTRACTANTS
Authors: Dalle Ave, Giancarlo
Advisor: Adams II, Thomas
Department: Chemical Engineering
Keywords: Acetone-butanol-ethanol fermentation;Extractant;Techno-economic analysis
Publication Date: 2016
Abstract: This work seeks to compare various Acetone-Butanol-Ethanol (ABE) fermentation extraction chemicals on an economic and environmental basis. The chemicals considered are: decane, a decane/oleyl alcohol blend, decanol, a decanol/oleyl alcohol blend, 2-ethyl-hexanol, hexanol, mesitylene, and oleyl alcohol. To facilitate comparison a pure-distillation base case was also considered. The aforementioned extractants are a mix of both toxic and non-toxic extractants. Non-toxic extractants can be used directly in fermentation reactors, improving overall fermentation yield by removal of toxic butanol. The extractants were modelled in Aspen Plus V8.8 and separation trains were designed to take advantage of extractant properties. The separation section of the plant was then integrated with upstream and downstream units to determine the Minimum Butanol Selling Prices (MBSP) for second generation extractive ABE fermentation. Upstream processes include biomass (switchgrass) solids processing, biomass pre-treatment/saccharification and fermentation while downstream processes include utility generation and wastewater treatment. The cost of CO2 equivalent emissions avoided (CCA) was used as a metric to compare environmental impact of each process as compared to gasoline. The economic best and environmental best extractant is shown to be 2-ethyl-hexanol with a MBSP of $1.58/L and a CCA of $471.57/tonne CO2 equivalent emissions avoided. Wastewater treatment, which is often ignored in other works, was found to makeup over 30% of total installed capital cost for all extractants.
URI: http://hdl.handle.net/11375/20469
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Dalle Ave_Giancarlo_F_2016Sept_MASc.pdf
Access is allowed from: 2018-04-01
1.83 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue