Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/20291
Title: Understanding the role of assembly factors in 30S subunit biogenesis
Other Titles: The role of assembly factors in 30S subunit biogenesis
Authors: Thurlow, Brett Thomas
Advisor: Ortega, Joaquin
Department: Biochemistry and Biomedical Sciences
Keywords: Ribosome Assembly
Publication Date: 2016
Abstract: Our understanding regarding the function of YjeQ, RbfA, RimM and Era in ribosome biogenesis has been derived in part from the study of immature 30S particles that accumulate in bacteria strains lacking one of these factors. However, their mechanistic details are still unknown. Here, we demonstrate that the 30SΔyjeQ and 30SΔrimM immature particles are not dead-end products of assembly, but progress into mature 30S subunits. Mass spectrometry analysis revealed that in vivo the occupancy level of these factors in these immature 30S particles is below 10% and that the concentration of factors does not increase when immature particles accumulate in cells. Analysis of the binding interactions of these assembly factors with mature 30S subunits and the immature particles demonstrated that YjeQ and Era bind to the mature 30S subunit with high affinity, however binding of these factors to the immature particles and of RimM and RbfA to mature or immature particles is weak. This indicates that binding of the assembly factors to the immature particles is not occurring at physiological concentrations. These results suggest that in the absence of these factors, the immature particles evolve into a thermodynamically stable intermediate that exhibits low affinity for the assembly factors and that the true substrates of YjeQ, RbfA, RimM and Era are immature particles that precede the ribosomal particles accumulating in the knockouts strains. We also developed an Era-depletion and ΔrbfA strain, which exhibited slow-growth, cold-sensitivity and an aberrant ribosome profile, which are all characteristic of ribosome assembly defects. Cryo-EM structural analysis of the 30SEra-depleted particles revealed that multiple classes at various stages in the assembly process accumulate upon depletion of Era, suggesting that Era may have a global effect on biogenesis. Ultimately, this thesis provides new insights into the nature of 30S particles that accumulate during assembly factor perturbation and advances our understanding of ribosome biogenesis as a whole.
URI: http://hdl.handle.net/11375/20291
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Thurlow_Brett_T_2016 August_PhD.pdf
Access is allowed from: 2017-08-25
49.08 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue