Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/20271
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorWaddington, James Michael-
dc.contributor.authorMcCann, Cameron N.-
dc.date.accessioned2016-08-30T14:05:00Z-
dc.date.available2016-08-30T14:05:00Z-
dc.date.issued2016-
dc.identifier.urihttp://hdl.handle.net/11375/20271-
dc.description.abstractThis study examined the usefulness of remote sensing to monitor peatlands, and more specifically Sphagnum moss ‘health’. Results from this study show that thermal imaging can be used to monitor Sphagnum productivity, as when the surface temperature of Sphagnum exceeds a threshold value (30.8 °C in the field and 18.2 °C in the laboratory), Sphagnum quickly changes from being productive to being unproductive. The Enhanced Normalized Difference Vegetation Index (ENDVI) can also be used in a similar manner, where if the ENDVI value is high (above 0.11 in the field and -0.12 in the laboratory), Sphagnum will be productive, and otherwise, it will be stressed. A classification scheme was developed to monitor peatland recovery to fire disturbance. By utilizing the ENDVI, leaf area index and aboveground biomass within a recovering peatland can be mapped, as well as the recovery trajectory of the groundcover. The findings of this study highlight the potential use of remote sensing to assess the driving factors of Sphagnum moss stress, as well as quickly and expansively aid in peatland recovery trajectory.en_US
dc.language.isoenen_US
dc.subjectremote sensingen_US
dc.subjectpeatlandsen_US
dc.subjectsphagnumen_US
dc.subjectecohydrologyen_US
dc.subjectGISen_US
dc.subjectchlorophyll fluorescenseen_US
dc.titleUtilizing Ground Level Remote Sensing to Monitor Peatland Disturbanceen_US
dc.typeThesisen_US
dc.contributor.departmentEarth and Environmental Sciencesen_US
dc.description.degreetypeThesisen_US
dc.description.degreeMaster of Science (MSc)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
McCann_Cameron_N_2016_MSc.pdf
Access is allowed from: 2017-02-22
29.74 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue