Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/20252
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorHoare, Todd-
dc.contributor.authorDorrington, Helen-
dc.date.accessioned2016-08-30T13:40:24Z-
dc.date.available2016-08-30T13:40:24Z-
dc.date.issued2016-
dc.identifier.urihttp://hdl.handle.net/11375/20252-
dc.description.abstractHydrogels have attracted interest as biomaterials due to their similarity to native tissue and extracellular matrix as well as their versatility and tunability. Each of these characteristics allows hydrogels to be used in a wide variety of biomedical applications including drug delivery, tissue engineering, and regenerative medicine. Poly(oligoethylene glycol methacrylate) (POEGMA) has been shown to possess attractive biological and thermoresponsive properties, serving as an alternative to both poly(ethylene glycol) (PEG) and poly(N-isopropylacrylamide) (PNIPAM) depending on the number of ethylene oxide repeat units in the POEGMA side chain. Our group has shown the versatility of POEGMA and has successfully developed hydrazide- and aldehyde-functionalized polymer precursors that form an injectable in situ gelling hydrogel. By engineering the precursor polymer structure and crosslinking density (i.e. number of reactive functional groups in the precursor polymers), the properties of these hydrogels can be tuned. Herein, a hyperbranched structure was incorporated into POEGMA precursors to control the physical and biological properties of hydrogels independent of the chemistry while maintaining gel injectability. By varying the degree of branching (DoB) in these precursors, it was possible to tune the hydrogel properties based on reacting combinations of hyperbranched-linear and hyperbranched-hyperbranched precursor polymers. While it was feasible to tune the mechanical properties of the hyperbranched hydrogels based on the DoB, the hyperbranched-hyperbranched system showed diminished mechanical strength when compared to the hyperbranched-linear system. Overall, the mechanical properties of the whole hydrogel series were comparable to previously reported linear POEGMA hydrogels. In terms of swelling and degradation kinetics, the swelling and degradation rate in both acid-catalyzed conditions and in phosphate-buffered saline (PBS) at physiological temperature (37°C) correlated with DoB and polymer size. The precursor polymers showed minimal cytotoxicity in the presence of 3T3 mouse fibroblasts. Lastly, each of the hyperbranched hydrogels adsorbed higher quantities of protein compared to PEG-based hydrogels, but still relatively low amounts compared to other polymeric biomaterials. We have shown that it is possible to significantly tune the physicochemical properties by slightly changing the polymer precursor chemistry, namely by varying the amount of crosslinker and, thus, the degree of branching in the polymer network. Therefore, hyperbranched POEGMA offers a versatile platform to create tunable hydrogels based on polymer precursor structure for biomedical applications.en_US
dc.language.isoenen_US
dc.subjectPOEGMAen_US
dc.subjecthydrogelsen_US
dc.subjectpolymersen_US
dc.subjecthyperbrancheden_US
dc.titleSynthesis and Characterization of In Situ Gelling Hydrogels Made From Hyperbranched Poly(oligoethylene glycol methacrylate)en_US
dc.typeThesisen_US
dc.contributor.departmentChemical Engineeringen_US
dc.description.degreetypeThesisen_US
dc.description.degreeMaster of Applied Science (MASc)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Dorrington_Helen_E_2016August_MASc.pdf
Open Access
6.91 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue