Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/19617
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorMacDonald, G. M.-
dc.contributor.authorMoser, Katrina Ann-
dc.date.accessioned2016-06-22T14:14:31Z-
dc.date.available2016-06-22T14:14:31Z-
dc.date.issued1988-12-
dc.identifier.urihttp://hdl.handle.net/11375/19617-
dc.description.abstract<p> The pollen, charcoal and sediment stratigraphies of two cores from small lakes located northeast of Yellowknife, NWT are examined. The focus of this study is to reconstruct post-glacial vegetation changes in this climatically sensitive area. The resulting vegetation history is compared to similar reconstructions from across Canada. The pollen content of twenty-eight modern sediment samples, collected from the forest, the forest-tundra and the tundra zones were used to aid in the interpretation of the fossil record. Radiocarbon dates indicate that the fossil records from these lakes span ~7 500 years. The initial vegetation, shrub Betula tundra, was established at ~7 000 BP and persisted until ~6 000 BP. The presence of Ericaceae, Myrica, and Sphagnum distinguishes this zone from similar zones from western Canada and suggests the existance of large areas of bog environment. This zone is succeeded by a second shrub tundra zone, which is marked by a dramatic increase in Alnus crispa and Alnus incana. This zone spans from ~6 000 BP until ~5 000 BP. A synchronous increase in Alnus is noted from sites across Canada and is attributed to an increase in moisture. The third zone, spanning from ~5 000 BP to ~3 500 · BP, delimits the existance of forest vegetation defined by the northward expansion of Picea mariana. The delay of Picea mariana expansion into the area relative to its arrival in western Canada can be explained by one of the following: 1) geological differences; or 2) remnant glacial ice retarding climatic amelioration; or 3) the long-wave westerly disturbance, which causes cooler temperatures in the east when warmer temperatures persist in western Canada; or 4) some combination of the above. The decline of forest vegetation at ~3 500 BP marks the establishment of modern tundra vegetation at both sites. Climatic cooling coupled with fire caused the extinction of aboreal vegetation at the study sites.</p>en_US
dc.language.isoen_USen_US
dc.subjectpalaeoecological, investigation, Treeline, zone, Yellowknife, NWT, pollen, charcoal, sediment, forest vegetation, Picea marianaen_US
dc.titleA Palaeoecological Investigation of the Treeline Zone North of Yellowknife, NWTen_US
dc.typeThesisen_US
dc.contributor.departmentGeographyen_US
dc.description.degreetypeThesisen_US
dc.description.degreeMaster of Science (MSc)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Moser_Katrina_Ann_1988Dec_Masters..pdf
Open Access
6.46 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue