Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/19497
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorWright, Gerard D.-
dc.contributor.authorKing, Andrew M.-
dc.date.accessioned2016-06-09T13:27:43Z-
dc.date.available2016-06-09T13:27:43Z-
dc.date.issued2016-
dc.identifier.urihttp://hdl.handle.net/11375/19497-
dc.description.abstractThe discovery of antibiotics and their subsequent clinical use has had a tremendous and beneficial impact on human health. The β-lactam antibiotics, which include penicillins, cephalosporins, carbapenems, and monobactams, constitute over half of the global antibiotic market. However, like all antibiotics, the β-lactams are susceptible to bacterial antibiotic resistance. One of the most disconcerting manifestations of bacterial resistance to β-lactam antibiotics is the evolution and dissemination of β-lactamases, enzymes able to chemically inactivate β-lactam antibiotics. These resistance determinants are the key contributing factor to extensively-drug resistant Gram-negative pathogens, for which we are already bereft of chemotherapeutic treatment options in some cases. The coadministration of a β-lactamase inhibitor (BLI) with a β-lactam antibiotic is a proven therapeutic strategy to counter β-lactamase expression. Unfortunately, the emergence of both serine β-lactamases (SBLs) that are resistant to BLIs and metallo-β-lactamases (MBLs), which are intrinsically resistant to BLIs due to a discrete mechanism of β-lactam hydrolysis, threaten the efficacy of combination therapy. Notwithstanding this bacterial adaptation, the discovery and development of novel BLIs is an attractive strategy to evade resistance, as evidenced by the recent clinical approval of the diazabicyclooctane (DBO) SBL inhibitor, avibactam. Herein, I describe efforts directed at understanding the mechanism of avibactam SBL inhibition. Furthermore, DBO derivatives are shown to display bifunctional properties in inhibiting both β-lactamases and the targets of β-lactam antibiotics, the penicillin-binding proteins. In addition to understanding the enzymology and chemical biology of DBOs, I describe two screening campaigns directed towards discovering inhibitors of MBLs, an unmet clinical need. Using target and cell-based screening of both synthetic and natural product chemical libraries, a fungal natural product inhibitor of clinically relevant MBLs was discovered and characterized. This study expands our understanding of the mechanisms by which DBOs can be used to combat extensively drug-resistant Gram-negative pathogens. It also describes the discovery of a new natural product MBL inhibitor using a workflow that should be amenable to other resistance determinants. It’s hoped that these studies can contribute meaningfully to countering antibiotic resistance observed in clinical settings.en_US
dc.language.isoenen_US
dc.subjectChemical Biologyen_US
dc.subjectAntibiotic Resistanceen_US
dc.titleDISCOVERY AND CHARACTERIZATION OF NOVEL BETA-LACTAMASE INHIBITORSen_US
dc.typeThesisen_US
dc.contributor.departmentChemistry and Chemical Biologyen_US
dc.description.degreetypeThesisen_US
dc.description.degreeDoctor of Philosophy (PhD)en_US
dc.description.layabstractBeta-lactam antibiotics like penicillin are a mainstay for treatment of bacterial infections. Bacterial resistance to these antibiotics threatens their utility and therefore new strategies are required to counter this phenomenon. Herein I describe efforts aimed at understanding new drugs and candidate drugs that act by inhibiting the function of enzymes produced by bacteria that are able to degrade beta-lactam antibiotics. Through the discovery of new molecules and an understanding of their chemical mechanism of inhibition it is believed that bacterial resistance to beta-lactam antibiotics can be reversed.en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
King_Andrew_M_201605_PhD.pdf
Open Access
PhD Thesis8.36 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue