Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/19221
Title: INTERACTING EFFECTS OF POST-WILDFIRE HYDROPHOBICITY AND VEGETATION RECOVERY IN A POOR FEN PEATLAND
Authors: MacKinnon, Brandon
Advisor: Waddington, Mike
Department: Earth and Environmental Sciences
Keywords: Sphagnum;Ecohydrology;Wildfire
Publication Date: 2016
Abstract: To investigate the prevalence and magnitude of hydrophobicity in near-surface peat, a poor fen was characterized into four main post-fire microforms: i) severely burned hollows (SB-H), ii) severely burned Sphagnum fuscum hummocks (SB-Sf), iii) lightly burned S. fuscum hummocks (LB-Sf) and, iv) lightly burned feathermoss lawns (LB-F). The SB-H possessed the most hydrophobicity at the surface (85 ± 20 s) and increased at the 2 cm depth (183 ± 35 s). In comparison, the LB-F experienced an increase in hydrophobicity from the surface (44 ± 10 s) to 5 cm (323 ± 32 s) and remained high to the 10 cm depth (211 ± 31 s). Results on Sphagnum recovery show that only LB-Sf are recovering and the SB-H show marginal recovery of pioneer species such as Ceratodon purpureus and Polytrichum strictum. Moreover, S. fuscum had a mean surface cover of 56 ± 5.9% in the LB-Sf and both pioneer species together possessed a total cover of 15 ± 4.4% in the SB-H. While the vascular cover was correlated with increased transplant productivity which in conjunction with moisture availability (preference for hydrophilic substrate), transplant size (15cm diameter preferred over smaller colonies), and transplant location (SB-H preferred over LB-F) should all lead to decreased mortality in treatments. However, each species possesses slightly different characteristics that may be more desirable under reclamation conditions. Species that typically form hummock microform types like Sphagnum fuscum, Sphagnum magellanicum, and to some extent Sphagnum angustifolium can retain moisture under dry conditions (Clymo and Hayward, 1982; Andrus, 1986) and may be optimal for areas experiencing droughts or water limitations. Areas that are commonly inundated with water may benefit from a species that grows through lateral expansion such as Sphagnum angustifolium, Sphagnum riparium, or Sphagnum squarrosum (Andrus, 1986). With S. angustifolium possibly being the best generalist due to its ability to remain photosynthetically active throughout a large range of moisture contents, tolerate desiccation, and grow rapidly (Silvola and Aaltonen, 1984; Andrus, 1986).
URI: http://hdl.handle.net/11375/19221
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
MacKinnon_Brandon_A_201604_MSc.pdf
Access is allowed from: 2017-04-29
Masters Thesis main report2.32 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue