Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/19192
Title: Phosphorus Mobility in Lacustrine Sediments Upon Lake Acidification
Authors: Mayer, Tatiana
Advisor: Kramer, James R.
Department: Geology
Keywords: phosphorus, mobility, lacustrine, sediments, lake, acidification
Publication Date: Sep-1984
Abstract: <p> The forms of phosphorus in sediments of acid and non-acid shield lakes were determined in order to assess the effects of lake acidification on the mobility of sediment phosphorus. Sediment phosphorus is conveniently classified into three categories: non-apatite inorganic phosphorus (NAI-P), apatite-P and organic P. The distribution of P between different categories was found to be dependent on the lithology of the lake basin, the pH in the water column, and the redox conditions.</p> <p> More than 90% of inorganic P in shield lake sediments was in the NAI-P category, associated presumably with hydrated Fe and Al oxides. Organic P accounted for more than 40% of total P in sediments of acid lakes, which is proportionally higher than that found in sediments of neutral lakes. Bioavailable P, a measure of the fraction of sediment inorganic P readily available for biological utilization, amounted to ~70% of NAI-P, similar to that found in hard water lakes.</p> <p> A series of experiments was designed to investigate the immobilization of P from solution. The uptake of P by solid phase was explained by an adsorption mechanism. The quantitative estimates of phosphate sorption parameters for sediments of acid and non-acid lakes show that mineralogical and chemical characteristics of sediments are more important than the pH of water in determining their efficiency of P removal. Therefore, acidification of lakes does not significantly influence the uptake of P by sediments.</p>
URI: http://hdl.handle.net/11375/19192
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Mayer_Tatiana_1984Sept_Masters..pdf
Open Access
3.45 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue