Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/19179
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorMcCullough, J. J.-
dc.contributor.authorSanga, Jackson K.-
dc.date.accessioned2016-05-02T14:50:35Z-
dc.date.available2016-05-02T14:50:35Z-
dc.date.issued1986-05-
dc.identifier.urihttp://hdl.handle.net/11375/19179-
dc.description.abstract<p> Cyclic voltammetric oxidation of 1,2,3,4,5-pentaphenylcyclopentadiene has been studied in non-polar chloroalkane solvents (CH2Cl2 and CH2ClCH2Cl). The oxidation is reversible if tetra-n-butylammonium hexafluorophosphate (TBA^+PF6^-) is used as supporting electrolyte, but irreversible when tetra-n-butylammonium perchlorate (TBA^+ClO4^-) or tetra-n-butylammonium trifluoromethane sulfonate (TBA^+OTf^-) are used, and partially reversible when tetra-n-butylammonium tetrafluoroborate (TBA^+BF4^-) is used. Oxidation of 1,2,3,4,5-pentaphenyl-1-methylcyclopentadiene, which has no relatively acidic protons, was reversible with all four supporting electrolytes.</p> <p> The criteria for reversibility were observation of cathodic wave on scan reversal, equal anodic and cathodic peak currents, minor dependence of peak potentials on scan rate, v, and linearity of anodic peak current, ipa with the square root of scan rate, v^1/2 , corresponding to Randles-Sevcik equation for reversible processes.</p> <p> It is proposed that perchlorate (ClO4^-) and triflate (OTf^-) anions are sufficiently basic to accept a proton from 1,2,3,4,5-pentaphenylcyclopentadiene cation-radical intermediate, while tetrafluoroborate (BF4^-) and particularly hexafluorophosphate (PF6^-) are less basic, and therefore less reactive.</p> <p> Controlled potential electrolysis of 1,2,3,4,5-pentaphenylcyclopentadiene with tetra-n-butylammonium perchlorate as supporting electrolyte affords the cation, which is consistent with an ECE mechanism in which the chemical step is proton loss.</p>en_US
dc.language.isoen_USen_US
dc.subjectanodic, oxidation, cyclic, non-polar, cathodic, electrolyteen_US
dc.titleAnodic Oxidation of Pentaphenylcyclopentadienesen_US
dc.typeThesisen_US
dc.contributor.departmentChemistryen_US
dc.description.degreetypeThesisen_US
dc.description.degreeMaster of Science (MSc)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Sanga_Jackson_K._1986May_Masters..pdf
Open Access
2.95 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue