Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/19004
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorMishra, R. K.-
dc.contributor.authorGuest, Kelly A.-
dc.date.accessioned2016-04-01T18:07:35Z-
dc.date.available2016-04-01T18:07:35Z-
dc.date.issued2010-08-
dc.identifier.urihttp://hdl.handle.net/11375/19004-
dc.description.abstractSchizophrenia (SCZ) is a debilitating mental illness that affects roughly 1% of the world's population. Current theories about the etiology of this disease highlight disruptions in dopamine (DA) and glutamine. However, a more recent theory, the 'synaptic hypothesis' proposes that the fundamental pathology of this illness involves disruptions in synaptic transmission. The synapsins are a family of neuron specific phosphoproteins that play an important role in neurotransmitter release, synapse formation and maintaining a reserve pool of synaptic vesicles. Previous research has suggested that synapsin II has a role in the etiology of SCZ. For example, synapsin II mRNA is significantly reduced in the medial prefrontal cortex (MPFC) of patients, and synapsin II knockout mice display a variety of behavioural abnormalities which mimic human SCZ. Considering that SCZ may result from changes in the synapse, we wanted to further elucidate the role of synapsin II by measuring protein expression in post-mortem PFC samples. Overall, our results revealed that synapsin IIa and IIb are not significantly different between patients and controls, however, we hypothesize that synapsin II expression has been normalized in patients due to antipsychotic drug (APD) use. In fact, we discovered that treatment with atypical APDs significantly increases synapsin II in the prefrontal cortex (PFC) of patients, which may underlie the beneficial effects of these drugs. Another objective of our work was to investigate the expression of various presynaptic proteins in post-mortem samples from patients with Parkinson's disease (PD) Parkinson's disease, like SCZ, is an illness which involves dysregulated dopaminergic transmission and synaptic dysfunction. Therefore, we hypothesized that synapsin II might also be disrupted in patients with PD. Our results demonstrated that synapsin IIa and IIb are significantly reduced in the substantia nigra (SN), but not the striatum (STR) or PFC of patients, when compared to controls. Further, no changes were observed in the other synapsins (I or III), or synaptophysin, which suggests that synapsin II dysregulation may be specific to disorders which involve disruptions in dopamine (DA).en_US
dc.language.isoenen_US
dc.subjectneuroscience; cellular and molecularen_US
dc.subjectsynapsin IIen_US
dc.subjectneurological disordersen_US
dc.subjectdysregulated dopaminergic transmissionen_US
dc.titleInvestigating the Role of Synapsin II in Neurological Disorders Involving Dysregulated Dopaminergic Transmissionen_US
dc.contributor.departmentNeuroscienceen_US
dc.description.degreetypeThesisen_US
dc.description.degreeMaster of Science (MS)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Guest_Kelly_A_2010Aug_MSc.pdf
Open Access
28.15 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue