Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/18866
Title: Hybrid Model for Monitoring and Optimization of Distillation Columns
Authors: Aljuhani, Fahad
Advisor: Mahalec, Vladimir
Department: Chemical Engineering
Keywords: hybrid model;optimization;distillation;modeling
Publication Date: 2016
Abstract: Distillation columns are primary equipment in petrochemical, gas plants and refineries. Distillation columns energy consumption is estimated to be 40% of the total plant energy consumption. Optimization of distillation columns has potential for saving large amount of energy and contributes to plant wide optimization. Currently rigorous tray to tray models are used to describe columns separation with high accuracy. Rigorous distillation models are being used as part of design, optimization and as a part of on-line real-time optimization applications. Due to large number of nonlinear equations, rigorous distillation models are not suitable for inclusion in optimization models of complex plants (e.g. refineries), since they would make the model too large. For this reason, current practice in plant-wide optimization for planning or for scheduling is to include simplified model. Accuracy of these simplified models is significantly lower than the accuracy of the rigorous models, thereby causing discrepancy between production planning and RTO decisions. This work describes reduced size hybrid model of distillation columns, suitable for use as stand-alone tool for individual column or as part of a complete plant model, either for RTO or for production planning. Hybrid models are comprised of first principles material and energy balances and empirical models describing separation in the column. Hybrid models can be used for production planning, scheduling and optimization. In addition this work describes inferential model development for estimating streams purity using real time data. Inferential model eliminates the need for Gas Chromatography GC analyzers and can be used for monitoring and control purposes. Predictions from the models are sufficiently accurate and small size of the models enable significant reduction in size of the total plant models.
URI: http://hdl.handle.net/11375/18866
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Aljuhani_Fahad_M_201512_MASc.pdf
Open Access
2.43 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue