Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Bachelor theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/18617
Title: Structural Relationships between the Exshaw Thrust and Heart Mountain syncline, Exshaw, Alberta
Authors: LeGresley, Eric
Advisor: Clifford, P. M.
Department: Geology
Keywords: structural variability;megascopic;mesoscopic;imbricate thrusts;structural relationships;orthogonal fracture system
Publication Date: Apr-1982
Abstract: <p> Displacement transfer between faults and folds has been extensively documented in the Rocky Mountains as an explanation for structural variability along strike producing seemingly similar overall shortenings. A series of subparallel imbricate thrusts and an associated syncline in the Southern Canadian Front ranges at Heart Mountain has been mapped at a scale of 1:16,667. Megascopic, mesoscopic and microscopic evidence supports the contention that the folding observed at Heart Mountain occurred synchronously with thrusting as the result of displacement transfer from the adjacent thrust. </p> <p>Numerical dynamic analyses (NDA) suggest that twinning of calcite grains occurred very early in the deformational history in response to a regional stress field orientation of 246/03, 340/02, and 159/84 for o 1, o2 , and 03 respectively in the Exshaw plate. Megascopic and mesoscopic fabrics indicate similar results. Ambiguous NDA results for the Heart Mountain Syncline are explained using neutral surface folding theories rather than flexural slip theories generally proposed for folding within the Front Ranges. Neutral surface folds are consistent with the deformational model (displacement transfer) proposed. </p> <p>An orthogonal fracture system is pervasive throughout the thesis area. Observations indicate that fractures are oriented parallel and perpendicular to the strike of the Rocky Mountains. Their development is inferred to have taken place in the same regional stress field thought to be responsible for twinning, with fracture opening occurring after the relaxation of tectonic stresses and the removal of substantial amounts of overburden. </p>
URI: http://hdl.handle.net/11375/18617
Appears in Collections:Bachelor theses

Files in This Item:
File Description SizeFormat 
Legresley_Eric_M_1982_Bachelors.pdf
Open Access
9.87 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue