Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/18520
Title: Late Transition Metal Complexes of Group 13 Lewis Acid-Containing Ambiphilic Ligands
Authors: Cowie, Bradley E.
Advisor: Emslie, David J. H.
Department: Chemistry and Chemical Biology
Keywords: Inorganic Chemistry;Ambiphilic Ligands
Abstract: The coordination chemistry of a structurally rigid phosphine–thioether–borane ligand, TXPB (TXPB = 2,7-di-tert-butyl-5-diphenylboryl-4-diphenylphosphino-9,9-dimethylthioxanthene), as well as the Group 13 Lewis acid-appended analogues of 1,1'-bis(phosphino)ferrocene, FcPPB (FcPPB = [Fe(η5-C5H4PPh2){η5-C5H4PtBu(C6H4BPh2-o)}]) and FcPPAl (FcPPAl = [Fe(η5-C5H4PPh2){η5-C5H4PtBu(C6H4AlMe2-o)}]) has been explored with a range of transition metal pre-cursors. Previously reported [Rh(μ-Cl)(CO)(TXPB)] (1) reacted with Me3SiBr, Me3SiI, [NMe4]F, Tl[PF6] and NaBH4 to provide [Rh(μ-Br)(CO)(TXPB)] (2), [RhI(CO)(TXPB)] (3), [Rh(CO)(TXPB-F)] {(4); TXPB-F = {5-(2,7-di-tert-butyl-4-diphenylphosphino-9,9-dimethylthioxanthenyl)}diphenylfluoroborate]}, [Rh(CO)(TXPB)][PF6] (5) and [Rh(μ-H)(CO)(TXPB)] (6), respectively; the rhodium–borane and rhodium–co-ligand–borane coordination modes within these complexes are dependant on the co-ligand bound to rhodium (co-ligand = Cl, Br, I, F, H, or none in the case of cationic 5). Additionally, previously reported [(TXPB)Rh(μ-CO)2Fe(CO)Cp] (7) reacted with various isonitriles (CNR; R = C6H4Cl-p, 2,6-Me2-C6H3, nBu) to yield the bridging borataaminocarbyne complexes [(TXPB)Rh(μ-CO)(μ-CNR)Fe(CO)Cp] (8–10). The borane-free analogue of (7), [(TXPH)Rh(μ-CO)2Fe(CO)Cp] (11; TXPH = 2,7-di-tert-butyl-4-diphenylphosphino-9,9-dimethylthioxanthene), was synthesized for comparison, and reacted with CNC6H4Cl-p to yield [(TXPH)Rh(CO)(μ-CNC6H4Cl-p)2Fe(CO)Cp] (12), featuring two bridging isonitrile ligands. The TXPB ligand reacted with [PtMe2(cod)] (cod = 1,5-cyclooctadiene), forming [PtMePh(TXPB')] (13; TXPB' = 2,7-di-tert-butyl-5-methylphenylboryl-4-diphenylphosphino-9,9-dimethylthioxanthene), which exists in equilibrium with zwitterionic [PtMe(TXPB-Me)] (13') in solution. When heated, [PtMePh(TXPB')] (13) was converted to [PtPh2(TXPB'')] (14; TXPB'' = 2,7-di-tert-butyl-5-dimethylboryl-4-diphenylphosphino-9,9-dimethylthioxanthene) as an 86:14 equilibrium mixture with 13. Moreover, [PtMePh(TXPB')] (13) reacted with PPh3 and P(OPh)3 to provide neutral [PtMePh(PR3)(TXPB')] [R = Ph (15), OPh (16)], or with CNXyl to yield zwitterionic [PtMe(CNXyl)2(TXPB-Me)] (17; TXPB-Me = {5-(2,7-di-tert-butyl-4-diphenylphosphino-9,9-dimethylthioxanthenyl)}methyldiphenylborate). To address several limitations with the TXPB ligand, a new borane-containing ambiphilic ligand, FcPPB (26), was prepared in a seven step convergent synthesis from commercially available ferrocene and 1,2-dibromobenzene. The FcPPB ligand reacted with the Group 10 metal pre-cursors [Ni(cod)2], [Pd2(dba)3] (dba = trans,trans-dibenzylideneacetone) and [Pt(nb)3] (nb = norbornene), yielding co-ligand free [M(FcPPB)] complexes [M = Ni (28), Pd (29), Pt (30)] exhibiting κ2PP- and η3BCC-coordination of the FcPPB ligand. Alternatively, a trisphosphine-analogue of FcPPB, FcPPP (FcPPP = [Fe(η5-C5H4PPh2){η5-C5H4PtBu(C6H4PPh2-o)}]) (25), reacted with [Ni(cod)2] and [Pd2(dba)3] to form [{Ni(FcPPP)}2(μ-N2)] (33) and [Pd(η2-dba)(FcPPP)] (34), respectively. Platinum complex 30 reacted with CO, CNXyl and H2, providing [Pt(CO)(FcPPB)] (35), [Pt(CNXyl)(FcPPB)] (36) and [PtH(μ-H)(FcPPB)] (37), in which the borane is no longer η3BCC-coordinated; the arylborane in FcPPB is now engaged in η2BC-, η1B- and bridging Pt–H–B coordination, respectively. Moreover, [Pt(FcPPB)] (30) reacted with PhC2H to provide [Pt(C2Ph)(μ-H)(FcPPB)] (38), which rapidly isomerized to the vinylborane complex, [Pt(FcPPB')] (39; FcPPB' = [Fe(η5-C5H4PPh2)(η5-C5H4PtBu{C6H4BPh(CPh=CHPh-Z)-o})]). The FcPPB ligand also reacted with [Au(PPh3)][GaCl4] to yield [{Au(FcPPB)}2][GaCl4] (40) as a diastereomeric mixture, or with [W(CO)6] and [Ru3(CO)12] under photochemical and thermal conditions, respectively, to yield [W(CO)4(FcPPB*)] (41; FcPPB* = [Fe(η5-C5H4PPh2){η5-C5H3P(tBu)C6H4BPh-o}]) and [Ru3(μ-H)(CO)10(FcPPB**)] (42; FcPPB** = [Fe(η5-C5H4PPh2){η5-C5H3P(tBu)C6H4BPh2-o}]–), respectively. Both [W(CO)4(FcPPB*)] (41) and [Ru3(μ-H)(CO)10(FcPPB**)] (42) are products of intramolecular attack of the borane on the adjacent cyclopentadienyl-ring. Free FcPPB did not undergo any reaction under similar conditions. However, FcPPB reacted with B(C6F5)3 and BF3·OEt2 to yield FcPPB{B(C6F5)3} (43; [Fe(η5-C5H4PPh2{B(C6F5)3}){η5-C5H4PtBu(C6H4BPh2-o)}]) and [FcPPB-Ph][BF4] (44; [Fe(η5-C5H4PPh2){η5-C5H4PtBu(C6H4BPh-o)}]+), respectively; the former is a phosphine–borane adduct, whereas the latter is a bisphosphine-stabilized boronium cation. The coordination chemistry of a dimethylalane-appended analogue of FcPPB, FcPPAl (27), was also investigated; reaction with [Pt(nb)3] provided [Pt(η2-nb)(FcPPAl)] (45), which readily reacted with C2H4, C2Ph2, H2, and CO to provide [Pt(η2-C2H4)(FcPPAl)] (47), [Pt(η2-C2Ph2)(FcPPAl)] (48), [PtH2(FcPPAl)] (49) and [Pt(CO)(FcPPAl)] (50), respectively. Alternatively, heating a benzene solution of [Pt(η2-nb)(FcPPAl)] (45) yielded co-ligand free [{Pt(FcPPAl)}2] (46). All of the isolated platinum-FcPPAl complexes feature κ3PPAl-coordination of the FcPPAl ligand to platinum, and are the first unambiguous examples of η1Al-coordinated alkylalane complexes.
URI: http://hdl.handle.net/11375/18520
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Cowie_Bradley_E_2015October_PhD.pdf
Open Access
PhD Thesis15.66 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue