Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/18407
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorLi, Yingfu-
dc.contributor.authorGysbers, Rachel-
dc.date.accessioned2015-10-14T17:42:09Z-
dc.date.available2015-10-14T17:42:09Z-
dc.date.issued2015-
dc.identifier.urihttp://hdl.handle.net/11375/18407-
dc.description.abstractLife would not exist in the absence of catalysis. The “RNA World” model for the origin of life hinges on the capabilities of ribonucleic acid to encode information and perform catalysis (i.e. self-replication). Previously, functional nucleic acids such as ribozymes and deoxyribozymes (DNAzymes) have been isolated using the process of in vitro selection. This method is typically performed by isolating a catalytically active molecule from a large random library, with the assumption being that active molecules are already present in the pool and this method filters them from inactive molecules. However, in vitro selection has never been used to show that a molecule can be evolved from an inactive to an active catalyst. Here we show that the properties of DNA can be exploited to act as a proxy system for the origins of biotic chemistry by isolating a functional catalyst from a previously non-catalytic sequence. This project employs a novel perspective; rather than a random library, a known, non-functional sequence is utilized. Using in vitro selection, this known sequence is gradually evolved into a functional catalyst by solely allowing the existence of sequences that acquire mutations which enhance their function. Deep sequencing analysis of DNA pools along the evolution trajectory has identified individual mutations as the progressive drivers of molecular evolution. Evolving a catalyst from a non-catalyst gives insight into the comprehension of how life originated. This project demonstrates that an enzyme can indeed arise from a sequence of a functional polymer via permissive molecular evolution, a mechanism that may have been exploited by nature for the creation of the enormous repertoire of enzymes in the biological world today.en_US
dc.language.isoenen_US
dc.subjectevolutionen_US
dc.subjectoriginsen_US
dc.subjectastrobiologyen_US
dc.subjectRNA Worlden_US
dc.subjectselectionen_US
dc.subjectdnazymeen_US
dc.titleEvolving an Enzyme From a Non-Catalytic Sequenceen_US
dc.typeThesisen_US
dc.contributor.departmentBiochemistry and Biomedical Sciencesen_US
dc.description.degreetypeThesisen_US
dc.description.degreeMaster of Science (MSc)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
gysbers_rachel_e_finalsubmission2015_msc.pdf
Open Access
MSc thesis; main article1.94 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue