Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/18404
Title: Simulation of Mechanical Behaviour of Pure Titanium
Authors: Deng, Shu
Advisor: Wu, Peidong
Department: Mechanical Engineering
Keywords: Plastic Deformation;Titanium;Crystal Plasticity Modelling;Visco-Plastic Self-Consistent;Mechanical Behaviour
Publication Date: Nov-2015
Abstract: Titanium is a widely applied material in industries and characterized by highly anisotropic mechanical behaviour. To study the special property of titanium, many kinds of mechanical loading tests have been conducted. Moreover, researchers attempted to reproduce these experiments with numerical methods. This paper will present an overview about the deformation mechanisms and related representative studies of titanium. Among the numerical methods, Taylor type and self-consistent crystal plasticity models are two of the most common ones seen in literature. Simulation of some mechanical loading tests using visco-plastic self-consistent model was carried out and compared with the results given by Taylor type model. It has been found that self-consistent model prevails in the reproduction of stress-strain response and texture evolution. During the calculation of self-consistent model, there are totally 4 kinds of self-consistent schemes available for linearization process. The author investigated 4 groups of simulation works using different self-consistent schemes. But no evident distinction has been observed. The application of visco-plastic self-consistent model in commercial purity titanium is studied at the end. The simulation results successfully captured the general features of 9 mechanical loading tests.
URI: http://hdl.handle.net/11375/18404
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Deng_Shu_2015Sep_MASc.pdf
Open Access
Main article5.56 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue