Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/18297
Title: Accuracy and Precision of Microelectronic Measuring Systems (MEMS)
Authors: Litman, Karen
Advisor: MacIntyre, Norma
Department: Rehabilitation Science
Keywords: Microelectronic Measuring System;Accuracy;Precision;Accelerometer;Gyroscope;Magnetometer
Publication Date: Nov-2015
Abstract: Microelectronic Measuring Systems (MEMS) are being used to capture kinematic data in real-world environments. The benefits of using MEMS are their small size, relatively low cost (compared to an Optical Motion Capture System) and the ability to capture real-time data in almost any environment. The accuracy and precision of MEMS can be influenced by elements in their surrounding environment such as building materials (i.e., reinforced steel) and structural components (i.e., elevators). Recognizing the influence of the environment on MEMS output is important if the MEMS are to be used in real-world environments where subjects could navigate between various environments. MEMS can also be affected by dynamic motion therefore testing of the MEMS in the same conditions in which they are to be used will help to identify any issues prior to data collection. The overall purpose of this thesis was to determine if the outputs of four Shimmer 2r MEMS were accurate and precise enough in static and dynamic conditions to use in a future study to assess gait activities of daily living in individuals with a unilateral transtibial amputation. In order to understand the effect of the environment on the MEMS, accuracy and precision were assessed in a rural environment (to reduce the effect of building materials and structural components) as well as the clinical environment where they will eventually be used for research. The MEMS were also evaluated in static and dynamic conditions to better understand how motion affected accuracy and precision. The results of this study confirmed that the clinical environment affected the MEMS outputs. During the dynamic condition, the gyroscope output of one MEMS sensor was significantly different than the other devices indicating recalibration or possible exclusion from future studies. Prior to using MEMS in research, it is advisable to investigate the effects of the environment on the sensor outputs as well as assess the performance of the individual sensors.
URI: http://hdl.handle.net/11375/18297
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Litman_Karen_E_2015September_MScRehabilitationScience.pdf
Open Access
MSc Thesis2.58 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue