Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/18274
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorZiada, Samir-
dc.contributor.authorBolduc, Michael-
dc.date.accessioned2015-09-28T13:46:40Z-
dc.date.available2015-09-28T13:46:40Z-
dc.date.issued2015-11-
dc.identifier.urihttp://hdl.handle.net/11375/18274-
dc.description.abstractThe excitation mechanism of trapped diametral acoustic modes within a rectangular cavity-duct system is investigated both numerically and experimentally. The asymmetry inherent within the rectangular geometry introduces a preferred orientation, ensuring the excited diametral modes remain stationary. Three separate cavities are manufactured and tested. This included two asymmetric rectangular cross-sections and one symmetric square cavity. Experimental results indicate that the aeroacoustic responses of the three cavities are dominated by the strong excitation of trapped diametral modes. Numerical simulations indicate that the resolved radial acoustic particle velocity distributions are non-uniform at the upstream separation edge where the formation of vortical structures is initiated. As the cavity became smaller, and more asymmetric, the trapped nature of the acoustic modes decreased with an accompanied increase in the radiation losses and reduction in pulsation amplitude. Observations of the aeroacoustic measurements show evidence of three unique modal behaviours. The first case is the independent excitation of a single stationary mode where specific circumferential sections of the shear layer were excited and initiating the formation of vortical disturbances. These circumferential sections, and distribution of disturbances, were akin to the excited mode shape. The second case involved simultaneous excitation of two stationary modes. This suggested that the shear layer was exciting two modes simultaneously. Neighbouring circumferential sections, at the initial region of the shear layer, were being excited independently and at different resonant frequencies. Finally, a spinning trapped acoustic mode was observed in the symmetric square cavity. Due to the spinning nature, the excited circumferential portions and formation of vortices were non-uniform and rotated with the spinning acoustic mode. This resulted in the formation of a three-dimensional helical structure.en_US
dc.language.isoenen_US
dc.subjectSelf-Sustained Cavity Oscillationsen_US
dc.subjectFluid-Resonant Feedbacken_US
dc.subjectAeroacousticsen_US
dc.subjectDiametral Modesen_US
dc.subjectAcoustic Resonanceen_US
dc.subjectTrapped Modesen_US
dc.titleThe Aerodynamic Excitation of Trapped Diametral Acoustic Modes in Rectangular Ducted Cavitiesen_US
dc.typeThesisen_US
dc.contributor.departmentMechanical Engineeringen_US
dc.description.degreetypeThesisen_US
dc.description.degreeMaster of Applied Science (MASc)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Bolduc_Michael_R_2015September_MASc.pdf
Open Access
Michael Bolduc Thesis6.63 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue