Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/18069
Title: Dual Isolation for Enhanced Seismic Protection
Authors: Ezazi, Ashkan
Advisor: Becker, Tracy
Department: Civil Engineering
Keywords: Earthquake;Base Isolation;Dual Isolation
Publication Date: Nov-2015
Abstract: Base isolated buildings are well known to provide enhanced performance due to minimized accelerations and decreased interstory drifts. However, the reduced demands are obtained at the expense of large displacements at the isolation layer. This study investigates an innovative system, termed ‘dual isolation’, which applies two layers of isolation, one at the base and one mid-story to resolve this issue. An analytical solution for the equation of motion of the proposed system is developed based on linear isolation theory. This creates a foundation to assess the behavior of various types of seismic protection systems and to select the damping, mass and frequency ratio that leads to an optimal dual isolation design. Time history responses of the dual isolation system with viscous damping are compared to those of a conventional isolation counterpart to examine the effectiveness of the system. The system reduces first floor displacements by 40% on average, while the roof displacement is increased by roughly 15%. This results in reduced design forces for the structure. In addition, accelerations, especially above the second isolation layer, are significantly decreased. By reducing story shears and accelerations, the dual isolation system limits damage to both structural and nonstructural systems and components, thereby increasing global system performance.
URI: http://hdl.handle.net/11375/18069
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Ezazi_Ashkan_201707_MASc.pdf
Open Access
Main article6.49 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue