Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/17557
Title: Numerical Investigation of Sloshing Motion Inside Tuned Liquid Dampers With And Without Submerged Screens
Authors: Marivani , Morteza
Advisor: Hamed, Mohamed S.
Department: Mechanical Engineering
Keywords: Finite difference, Volume of fluid, Tuned liquid damper, Free surface, Sloshing motion, Deformation, Damping device, Slat screen, TLD, SDOF, single degree of freedom, Duhamel integral method
Publication Date: Aug-2009
Abstract: <p> A numerical algorithm has been developed to solve the sloshing motion of liquid in a Tuned Liquid Damper (TLD) outfitted by slat screens under large and random amplitude of excitation. It is based on the finite-difference method. The free surface has been reconstructed using volume of fluid method. Donor-acceptor technique has been used for tracking the volume fraction field. The effect of slat screen has been included and modeled using the partial cell treatment method. </p> <p> The algorithm is an integrated fluid-structure model where the response of the structure is determined considering the effects of TLD. The structure is assumed as a single degree of freedom system (SDOF) and its response is calculated using the Duhamel integral method. </p> <p> The algorithm has been validated against experimental data for the cases with and without screens. An excellent agreement was obtained between numerical and experimental results. </p> <p> An extensive parametric study has been carried out investigating the effect of slat screens and screen pattern on the TLD performance and on the structure response. A new parameter termed as slat ratio was introduced to characterize the slat screens based on their pattern. Results indicated that screen pattern has a significant effect on the TLD performance and it could lead up to 33 % reduction in structure response. It was found that decreasing the slat ratio will increase the damping effect of a TLD outfitted by slat screen. </p> <p> The validity of the most commonly used approach, Baines and Peterson model, to calculate pressure drop of slat screens has been investigated. A conelation factor as a function of Reynolds number and solidity ratio of screen has been proposed to improve the results of this model. A new concept termed as effective solidity ratio has been proposed to account for the physical significant of screen pattern on TLD performance. </p>
URI: http://hdl.handle.net/11375/17557
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Marivani_Morteza_2009Aug_PhD.pdf
Open Access
44.79 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue