Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/17523
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorChilds, R. F.-
dc.contributor.authorCorver, Hans A.-
dc.date.accessioned2015-06-11T17:06:23Z-
dc.date.available2015-06-11T17:06:23Z-
dc.date.issued1973-11-
dc.identifier.urihttp://hdl.handle.net/11375/17523-
dc.description.abstract<p> To investigate the stereochemical requirements for bishomoaromaticity it was necessary to develop a synthetic scheme that would give suitable precursors in which the stereochemistry could be unambiguously assigned. Arguments are presented in this theses to suggest that, if bishomoaromaticity is to be detected when the two methylene bridges are trans with respect to each other, the 1,4-bishomotropylium system is more favourably oriented for cyclic delocalization than the 1,3-bishomotropylium system. </p> <p> By reacting benzotropone ethylene ketal with phenyl mercuric trichloromethane, followed by removal of the chlorines and protecting group, it is possible to synthesize the trans-4,5-benzo-2,3:6,7-bishomotropone. The cis-4,5-benzo-2,3:6,7-bishomotroponewas synthesized by the action of dimethyloxosulfonium methylide on benzotropone. The stereochemistry in the cis and trans isomers was unambiguously established by examining the nmr spectra of the derived alcohols. </p> <p> To determine the effect of the benzene ring in these homoaromatic systems it was necessary to synthesize 4,5-benzo-2,3-homotropone. By reacting benzotropone with dimethyloxosulfonium methylide it was possible to obtain a high yield of 4,5-benzo-2,3-homotropone. </p> <p> The low temperature nmr spectra of protonated 4,5-benzo-2,3-homotropone and derived alcohol clearly showed that the benzene ring did not decrease the homoaromatic nature of these systems. The hydroxy substituent, however, had a marked effect on the homoaromatic nature. </p> <p> The low temperature nmr spectra of the protonated cis and trans-4,5-benzo-2,3:6,7-bishomotropones showed that the trans hydroxy cation could be best interpreted as a cyclopropyl carbinyl delocalized system and the cis hydroxy cation as a bishomoaromatic species. </p> <P> The low temperature nmr spectra of the trans-4,5-benzo-2,3:6,7bishomotropylium cation also supported the cyclopropyl carbinyl delocalization in this system. In contrast to the hydroxy-substituted system, however, the unsubstituted system was not equilibrating between the two possible equivalent boat conformations. This was attributed to the hydroxy substituent effect on the transition state of the boat-boat equilibrium. </p> <p> In conclusion, arguments are presented that would suggest that the trans-1,3-bishomotropylium cation is not a bishomoaromatic cation as previously reported, but that is can be best represented as a cyclopropylcarbinyl delocalized system. </p>en_US
dc.language.isoenen_US
dc.subjectchemistryen_US
dc.subjectstereochemistryen_US
dc.subjectbishomoaromaticityen_US
dc.subjectbishomotropylium systemen_US
dc.subject4,5-benzo-2,3:6,7-bishomotroponeen_US
dc.subjectlow temperature nmren_US
dc.titleStereochemical Requirements for Bishomoaromaticityen_US
dc.contributor.departmentChemistryen_US
dc.description.degreetypeThesisen_US
dc.description.degreeDoctor of Philosophy (PhD)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Corver_Hans_A_1973Nov_PhD.pdf
Open Access
7.51 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue