Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/17496
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorKardos, G.-
dc.contributor.authorBurke, Michael Anthony-
dc.date.accessioned2015-06-09T21:47:53Z-
dc.date.available2015-06-09T21:47:53Z-
dc.date.issued1970-05-
dc.identifier.urihttp://hdl.handle.net/11375/17496-
dc.description.abstract<p> Multiple impact tests were performed on mild steel. The pulse durations ranged from 15 to 250 milliseconds. Peak stresses extending to 135,000 p.s.i. were attained. </p> <p> A dynamic model, based on dislocation dynamics, was derived for polycrystalline metals and made specific to mild steel. The model provided a means of indirectly determining the dislocation velocity-stress exponent 𝑛 by experiment. </p> <p> An empirical flow function was evaluated which related dynamic load conditions to plastic deformation. This function is a further extension of the dynamic model. Several dislocation parameters are grouped together to pennit experimental evaluation of the strain rate effect on crystalline material. </p> <p> Experimental studies indicated that a given strain: </p> <p> 1) if produced by a single pulse, can be estimated by evaluation of the flow function for that load-time trace, or, </p> <p> 2) if produced by multiple impacts, can be estimated by the cumulative flow function, a summation of the flow functions for all impact traces. </p> <p> The multiple impact tests established the flow function as an equation of state. The plastic deformation could then be determined for a given dynamic load as long as the strain history is known. </p> <p> The theoretical model was used to support the experimental findings. </p>en_US
dc.language.isoenen_US
dc.subjectmechanical engineeringen_US
dc.subjectmild steelen_US
dc.subjectdynamic behaviour<en_US
dc.titleThe Dynamic Behaviour of Mild Steelen_US
dc.contributor.departmentMechanical Engineeringen_US
dc.description.degreetypeThesisen_US
dc.description.degreeMaster of Engineering (ME)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Burke_Michael_A_1970May_MEng.pdf
Open Access
9.75 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue