Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/17209
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorFoster, Jane-
dc.contributor.authorLai, Jonathan-
dc.date.accessioned2015-04-23T18:53:31Z-
dc.date.available2015-04-23T18:53:31Z-
dc.date.issued2015-06-
dc.identifier.urihttp://hdl.handle.net/11375/17209-
dc.description.abstractFragile X Syndrome (FXS) is a neurodevelopmental disorder and the most common heritable single gene cause of Autism Spectrum Disorder (ASD). The Fragile X (FMR1-KO) mouse model has been used to understand the pathophysiology of the disease. However, the majority of studies have been done in adult mice and early life outcomes have yet to be explored. Therefore, in order to contribute to the knowledge of the neurodevelopmental processes associated with brain disorders, this thesis examines postnatal outcomes in the Fragile X Mouse Model: early life behaviours, the developmental trajectory of a set of ASD risk genes, and neuroanatomical phenotype. The first study examined ultrasonic vocalizations in pups and showed a transient increase in calls in FMR1-KO mice. To understand the relationship between early life behaviours, the second study examined outcomes in the pre-pubertal period in these mice when challenged with lipopolysaccharide and maternal separation. The results showed genotype and treatment interactions affecting sexually dimorphic behavioural outcomes and developmental milestones. In the third study, possible underpinnings of behavioural differences were explored by examining mRNA expression of the neuroligins and neurexins. In FMR1-KO mice, changes were transient and sex-specific, suggesting these as molecular effectors in the disease. Lastly, using structural brain imaging, the fourth study examined regional volume differences that may be related to behavioural differences. Differences in regions affected in FXS patients were observed and genetic background was shown to affect the neuroanatomical phenotype. Overall, this thesis demonstrates that the FXS model recapitulates some outcomes in other ASD mouse models and shows that this single gene has multiple interactions with sex, strain, and postnatal challenge which manifests at specific ages at molecular, brain structure and behavioural levels. This work contributes to the efforts elucidating the neurobiology of ASD and reverse translation approaches to identify therapeutic targets for neurodevelopment disorders.en_US
dc.language.isoenen_US
dc.subjectbrain developmenten_US
dc.subjectgenetic mouse modelen_US
dc.titleNeurodevelopmental Outcomes in the Fragile X Mouseen_US
dc.typeThesisen_US
dc.contributor.departmentNeuroscienceen_US
dc.description.degreetypeDissertationen_US
dc.description.degreeDoctor of Philosophy (PhD)en_US
dc.description.layabstractAutism spectrum disorder (ASD) is a diagnosis based on observed behaviours: impaired communication and repetitive actions. However, there are genetic and other behavioural differences in ASD patients that are not shared among the group. It is important to tease apart this group since current treatments for ASD do not target the biological problems or the core impairments. This thesis focuses on Fragile X Syndrome, the leading genetic condition that results in ASD in order to understand the biological basis of ASD. Using a mouse model, compared to healthy mice, these studies report changes in behaviours, in the size of different brain regions, and in molecules involved in connecting brain cells during development. These findings shed light on the molecular story underlying ASD. By understanding the nature of influences on the developing brain, the type and timing of interventions can be designed to keep the brain on a healthy trajectory.en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Jonathan KY Lai_PhD Thesis _final.pdf
Open Access
entire dissertation5.09 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue