Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/17202
Title: Load-following heat, hot water and power distributed generation using an integrated solid oxide fuel cell, compressed air energy storage and solar panel array system.
Authors: Lefebvre, Kyle
Advisor: Adams II, Thomas
Department: Chemical Engineering
Keywords: SOFC;Distributed Generation;CAES
Publication Date: Jun-2015
Abstract: Distributed generation (defined as the production of power in small quantities at the point of use) has recently gained significant interest due to its benefits over a centralized approach. This thesis investigates the integration of a natural gas fed solid-oxide fuel cell (SOFC) and compressed air energy storage (CAES) technologies for distributed generation at the building-level scale. The SOFC/CAES system is also integrated with multiple vital sub-systems (including on-site solar panels) for the building to provide the heat, through an in-floor heating system, hot water, and power demanded by the building. This thesis investigates the models for the SOFC/CAES system, and implements them in a generic analysis tool providing a means for rapid analysis of a wide variety of case studies. The analysis tool determines the ability of the SOFC/CAES system to follow the power and heat loads demanded by the building, and evaluates its performance with an assortment of metrics, including efficiencies, CO2 emissions and grid-independence. The SOFC/CAES system was investigated for the new ExCEL building at McMaster University. It was found that the system was able to produce upwards 75% of the heat and hot water demand, and upwards of 94% of the power demand of the building. When compared to the current state-of-the-art natural gas based power producing technology and high efficiency furnace, the SOFC/CAES system reduces the CO2 emissions associated with the building by a minimum of 8.7% and a maximum of 26.95%. The cost of electricity for the system is significantly (21% to 150%) more costly than current market prices; however the SOFC/CAES system is the least costly of all other distributed generation technologies investigated for the case of the ExCEL building.
URI: http://hdl.handle.net/11375/17202
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Lefebvre_Kyle_W_2015April_MASc.pdf
Access is allowed from: 2016-04-23
Master's Thesis1.55 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue