Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/16889
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorYounggy, Kim-
dc.contributor.authorAsztalos, Joseph R.-
dc.date.accessioned2015-04-10T19:36:45Z-
dc.date.available2015-04-10T19:36:45Z-
dc.date.issued2015-06-
dc.identifier.urihttp://hdl.handle.net/11375/16889-
dc.description.abstractIn municipal wastewater treatment, anaerobic digestion is the slowest process requiring at least 15 day solids retention time (SRT). Treating only a small fraction of the total wastewater stream, anaerobic digesters require large reactor volumes and consistent heating (40°C). Thus, there is a growing need to investigate techniques to improve digestion efficiency. The long SRT requirement is a result of the time required for biological reactions such as hydrolysis and acetoclastic methanogenesis. There are numerous pretreatment methods which have so far been developed to particularly enhance hydrolysis. These pretreatment methods include thermalization, mechanical treatments, and chemical treatments. These methods aim to increase the degradability of the influent waste sludge which in turn will increase the efficiency of the digestion process. The goal of the research presented in this thesis is to enhance another limiting biological reaction: acetoclastic methanogenesis. Microbial electrolysis cell (MEC) technology was integrated into lab-scale anaerobic digesters in order to accelerate biosolids destruction under various SRT and temperature conditions. Various mathematical simulations were conducted using a developed steady-state ADM1 (Anaerobic Digestion Model No.1) model to further evaluate the performance of the digesters. The results of the research indicate that the proposed method is effective at shortened SRTs (e.g., 6 days) and can enhance the stability of anaerobic digestion when exposed to variations in temperature and influent composition.en_US
dc.language.isoenen_US
dc.subjectAnaerobic digestionen_US
dc.subjectMicrobial electrolysis cellsen_US
dc.subjectWastewater sludgeen_US
dc.subjectAnaerobic digestion model no.1en_US
dc.titleEnhanced Anaerobic Digestion of Municipal Wastewater Sludge using Microbial Electrolysis Cellsen_US
dc.typeThesisen_US
dc.contributor.departmentCivil Engineeringen_US
dc.description.degreetypeThesisen_US
dc.description.degreeMaster of Applied Science (MASc)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
JAsztalos_Thesis_Final_2015_MacSphere.pdf
Access is allowed from: 2016-03-09
Thesis file for online submission1.81 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue