Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/16802
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorBrook, Michael A.-
dc.contributor.authorRahman, Abidur-
dc.date.accessioned2015-03-12T14:28:04Z-
dc.date.available2015-03-12T14:28:04Z-
dc.identifier.urihttp://hdl.handle.net/11375/16802-
dc.description.abstractIn this work, we created shear thinning block copolymers that could be potentially utilized as an artificial vitreous replacement. The materials were created using poly(ethylene glycol) (PEG) and silicone polymers, respectively, due to their high biocompatibility. Both the ABA and BAB geometry triblock copolymers were created and were characterized using parallel plate and cone-and plate rheometers. It was observed that the materials from both geometries exhibited a decrease in viscosity with increasing shear rates, thus fulfilling the criteria of being a shear thinning material. The materials were also characterized under different aqueous conditions. It was observed that the materials with a higher PEG composition were better able to retain their physical structure – did not disperse into aqueous solutions – at higher water content levels. The materials that retained their structure were also shown to retain their shear thinning properties. In the absence of solvent, the opacity of the materials increased with increasing PEG composition ratio per copolymer chain. When exposed to different aqueous conditions, the opacity of the materials was found to decrease at specific water concentrations. Materials with larger PEG blocks required a greater water content to exhibit optimal light transmission.en_US
dc.language.isoenen_US
dc.subjectSilicone, PEG, Block copolymersen_US
dc.titleShear thinning silicone-PEG block copolymersen_US
dc.typeThesisen_US
dc.contributor.departmentChemistry and Chemical Biologyen_US
dc.description.degreetypeThesisen_US
dc.description.degreeMaster of Science (MSc)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Abidur Rahman_Thesis_Final Copy to be handed in .pdf
Access is allowed from: 2015-09-01
MSc Thesis, Abidur Rahman - Shear thinning silicone-PEG block copolymers1.75 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue