Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/16752
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorJain, Mukesh K.-
dc.contributor.advisorMetzger, Donald R.-
dc.contributor.authorSitu, Quan-
dc.date.accessioned2015-02-13T16:02:48Z-
dc.date.available2015-02-13T16:02:48Z-
dc.date.issued2008-01-
dc.identifier.urihttp://hdl.handle.net/11375/16752-
dc.description.abstractA new methodology is proposed to obtain the forming limit diagram (or FLD) of sheet materials by utilizing routinely obtained experimental load versus displacement traces and incorporating finite element (FE) analysis of strain history to extract the characteristic points of diffuse and localized necking and further the limit strains. The experimental data from hemispherical punch stretching test such as limit dome height, maximum load and location of inflection point are utilized to adjust the load curves in the FE simulations. An optimization procedure to obtain various parameters in material definition has been established to obtain a good agreement between the FE-based and experimental punch load versus displacement curves. An analysis of FE model based strain history is then carried out to determine the limit strains. This approach avoids using experimental strain measurement in the vicinity of the neck on the dome specimens. The materials tested with the new methodology include automotive sheets AA6111-T4, AA6181-T4 and DP600. The one utilized for optimization of FE inputs was AA6111-T4. The proposed method for FLD determination considers out-of-plane displacement, punch-sheet contact and friction, and avoids the use of a rather arbitrary inhomogeneity factor to trigger localization such as in the Marciniak-Kuczynski method. A new criterion to determine the localized necking is proposed by seeking an inflection point m the major strain rate curve, or, maximum point in the second order of derivative of major strain, (ε1)max. The proposed localized necking criterion is compared with other two methods to determine the onset of localized necking. These are (i) Bragard criterion for post-test of deformation, and (ii) critical major strain (ε1)cr based on comparison of strain of material inside the localized site and its vicinity in the un-necked site. The new criterion of (ε1)max exhibits a more definite physical meaning towards developing an understanding of flow localization, formability and fracture. This new approach for obtaining FLDs is rapid and accurate and could be implemented easily for routine FLO generation in a lab setting with little user input and subjectivity.en_US
dc.language.isoenen_US
dc.subjectforming limit diagram determinationen_US
dc.subjectlocalized necking criterionen_US
dc.titleA New Approach to Obtain Forming Limits of Sheet Materialsen_US
dc.typeThesisen_US
dc.contributor.departmentMechanical Engineeringen_US
dc.description.degreetypeThesisen_US
dc.description.degreeDoctor of Philosophy (PhD)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Situ Quan.pdf
Open Access
Thesis20.42 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue