Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/16698
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorFilipe, Carlos-
dc.contributor.authorGe, Xin-
dc.date.accessioned2015-01-29T15:43:41Z-
dc.date.available2015-01-29T15:43:41Z-
dc.date.issued2008-05-
dc.identifier.urihttp://hdl.handle.net/11375/16698-
dc.description.abstractElastin-like polypeptides (ELP) are artificially designed protein biopolymers that can be produced by living organisms. These proteins have the unique ability to undergo reversible inverse phase transition, in response to changes in temperature and/or addition of chaotropic salts. Below the transition temperature (T1) , ELP is soluble in water. Increasing the temperature above Ti, ELP coacervates into an aqeous ELP-rich phase. In this thesis, this unique feature of ELP was used in for recombinant protein purification and for the formation of aqueous multiple-phase systems. For protein purification, ELP was fused with an intein and a model protein (thioredoxin), to demonstrate a simple and inexpensive approach for recombinant protein purification. The ELP tags replace the chromatographic media and the intein replaces the use of the protease in conventional methods. Using ELP tags was found to be consistent with large -scale recombinant protein production/purification by purifying an ELP tagged protein using a stirred cell equipped with a microfiltration membrane. When the temperature and/or salt concer.tration is increased for mixtures containing free ELP and ELP tagged proteins, simultaneous phase transition takes place. This served as the basis for the development of a method suitable for selectively recovering molecules from complex mixtures with high specificity, full reversibility, and virtually unlimited affinity. The second parts of this thesis focus on the ability of ELP to form aqueous twophase systems (A TPS) in vitro and most importantly, in vivo- with the formation of aqueous microcompartments in living cells. These compartments exclude the protein making machinery of the cell, acting as depots for newly expressed protein. It is also shown (in vitro) that ELP bastd droplets exclude proteases, protecting proteins from degradation. These observations are important for high-level production of recombinant proteins. Also described, is the formation of protein based aqueous multiphasic systems, with tunable morphologies.en_US
dc.language.isoenen_US
dc.rightsAn error occurred on the license name.*
dc.rights.uriAn error occurred getting the license - uri.*
dc.subjectelastin-like polypeptidesen_US
dc.subjectprotein biopolymersen_US
dc.subjectaqueous multi-phase systemen_US
dc.subjectreversible inverse phase transitionen_US
dc.subjectrecombinant proteinsen_US
dc.titleIn Vivo and In Vitro Application of Elastin-Like Polypetidesen_US
dc.typeThesisen_US
dc.contributor.departmentChemical Engineeringen_US
dc.description.degreetypeThesisen_US
dc.description.degreeDoctor of Philosophy (PhD)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Ge Xin.pdf
Open Access
Thesis45.36 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue