Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/16630
Title: Fabrication of Advanced Organic-Inorganic Nanocomposite Coatings for Biomedical Applications by Electrodeposition
Authors: Pang, Xin
Advisor: Zhitomirsky, Igor
Department: Materials Science and Engineering
Keywords: electrodeposition;electrophoretic deposition;zirconia;coatings for biomedical implants;nanocomposite coatings;hydroxyapatite
Publication Date: Mar-2008
Abstract: Novel electrodeposition strategies have been developed for the fabrication of thick adherent zirconia ceramic and composite coatings for biomedical applications. The new method is based on the electrophoretic deposition (EPD) of polyelectrolyte additives combined with the cathodic precipitation of zirconia. The method enables the room- temperature electrosynthesis of crystalline zirconia nanoparticles in the polymer matrix. Adherent crack-free coatings up to several microns thick were obtained. The deposits were studied by thermogravimetric and differential thermal analysis, X-ray diffraction analysis, scanning and transmission electron microscopy, and atomic force microscopy. Obtained results pave the way for electrodeposition of other ceramic-polymer composites. Novel advanced nanocomposite coatings based on bioceramic hydroxyapatite (HA) have been developed for the surface modification of orthopaedic and dental implant metals. HA nanoparticles prepared by a chemical precipitation method were used for the fabrication of novel HA-chitosan nanocomposite coatings. The use of chitosan enables room-temperature fabrication of the composite coatings. The problems related to the sintering of HA can be avoided. A new electrodeposition strategy, based on the EPD of HA nanoparticles and electrochemical deposition of chitosan macromolecules, has been developed. The method enabled the formation of dense, adherent and uniform coatings of various thicknesses in the range of up to 60μm. Bioactive composite coatings containing 40.9-89.8 wt% HA were obtained. The deposit composition and microstructure can be tailored by varying the chitosan and HA concentrations in the deposition bath. A mathematical model describing the formation of the HA-chitosan composite deposit has been developed. X-ray studies revealed preferred orientation of HA nanoparticles in the nanocomposites. Obtained coatings provide corrosion protection of the substrates and can be utilized for the fabrication of advanced biomedical implants. For further functionalization of the HA-chitosan composite coating, Ag and CaSi03 have been incorporated into the coating. Novel HA-Ag-chitosan and HA-CaSiO3-chitosan nanocomposite coatings have been deposited as monolayers, laminates, and coatings of graded composition. The obtained results can be used for the development of biocompatible antimicrobial coatings with controlled Ag+ release rate, and nanocomposite coatings with enhanced bioactivity.
URI: http://hdl.handle.net/11375/16630
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Pang Xin.pdf
Open Access
Thesis63.83 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue