Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/16495
Title: Numerical Analysis of Thermal Stratification in Large Horizontal Thermal Energy Storage Tanks
Authors: Shaarawy, Maikel
Advisor: Lightstone, Marilyn
Department: Mechanical Engineering
Keywords: Thermal Stratification;Thermal Storage;Horizontal Tank;Drake Landing Solar Community;Thermal System;Storage Tank
Publication Date: Nov-2014
Abstract: In order to enhance the performance of a large horizontal thermal energy storage, a numerical model was generated and validated using measurements obtained from Drake Landing Solar Community (DLSC). A total of nine different baffle configurations were tested in order to enhance the thermal stratification. The designs were tested for a total of six different cases of charging, discharging and simultaneous charging and discharging in an attempt to better identify key features that mix the tank under realistic conditions. Characterization of the tank performance was done by monitoring the tank outlet temperature and computing Huhn's efficiency Second Law characterization index). Results show that the current tanks at DLSC experience excessive mixing due to plume entrainment that occurs during the spreading of the inlet jet. The introduction of a baffle into the middle of the tank was found to have no impact on the level of stratification. In addition, most designs tested have a relatively high level of stratification during charging, discharging and simultaneous charging and discharging, but fail to sustain the level of stratification when a positive buoyant jet is introduced. It was demonstrated that the inlets and outlets should be moved to the top and bottom of the tank to eliminate stagnant fluid that is not easily discharged. Horizontal baffles are effective in allowing the inlet jet to spread horizontally but not vertically, thus reducing the mixing. Alternatively, a simple solution would be to increase the size of the inlet, which has a comparable performance to the best baffle configurations.
URI: http://hdl.handle.net/11375/16495
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Shaarawy_Maikel_Magdy_201409_Master of Applied Science.pdf
Open Access
Thesis8.65 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue