Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/16492
Title: Assessing the functional role of adult hippocampal neurogenesis in humans using cognitive and neurobiological correlates
Other Titles: Functional role of adult neurogenesis in humans
Authors: Déry, Nicolas
Advisor: Becker, Suzanna
Department: Neuroscience
Keywords: exercise;growth factor;episodic memory;pattern separation;hippocampus;neurogenesis
Publication Date: Nov-2014
Abstract: Adult hippocampal neurogenesis, the generation of new neurons in the adult hippocampus, represents the most drastic form of ongoing plasticity in the human brain. When these adult-born neurons are a few weeks old, they have developed enough connections with surrounding hippocampal neurons to evoke meaningful change in network dynamics, but still have different morphological and physiological properties compared to developmentally generated neurons that render them more plastic. As such, and due to their location in the hippocampus, many have theorized that these new neurons play an important role in certain forms of learning memory as well as emotion. This dissertation outlines the first attempt to answer the question “what are new neurons in the hippocampus good for?” using human participants. Aerobic exercise is a lifestyle factor well-established from the animal literature to upregulate neurogenesis, while chronic stress is a known downregulator of neurogenesis. The second chapter of this thesis describes a study in which aerobic capacity and depression inventory scores demonstrated a significant positive correlation and a significant negative correlation with putative neurogenesis-dependent memory, respectively, in separate cohorts of healthy young adults. The third chapter outlines a study that expands on the one presented in the second by elucidating another potential role for neurogenesis in human cognition – remote memory. Finally, Chapter 4 describes a study investigating the utility of neurotrophins measured from peripheral blood as biomarkers for neurogenic activity in humans by examining how changes in their expression following chronic exercise predict changes in putative neurogenesis-dependent memory performance. These studies are the first to explicitly test and provide supporting evidence for the theoretical roles of adult hippocampal neurogenesis in humans. Taken together, these studies provide a strong foundation for how investigators and clinicians can indirectly quantify and test the function of adult-born neurons in the human brain.
URI: http://hdl.handle.net/11375/16492
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Dery_Nick_MR_Sept2014_PhD_submit.pdf
Open Access
Dery_Nick_MR_Sept2014_PhD_submit13.46 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue