Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/16438
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorHassell, John-
dc.contributor.authorBeilschmidt, Melissa Kathleen-
dc.date.accessioned2014-11-19T19:48:32Z-
dc.date.available2014-11-19T19:48:32Z-
dc.date.issued2014-11-
dc.identifier.urihttp://hdl.handle.net/11375/16438-
dc.description.abstractThe high rate of relapse often seen in breast cancer patients has been suggested to be the result of a small subset of chemotherapy-resistant cancer stem cells (CSCs), believed to be responsible for initiating tumor formation. These CSCs possess the capability to self-renew and give rise to a hierarchy of cells which makes up the bulk of a tumor. Neurotransmitters have been suggested to influence CSC self-renewal and proliferation capabilities, and antagonists of neurotransmission pathways have been implicated as possible treatment methods for chemo-resistant tumors. Using nicotinic acetylcholine receptor (nAChR) antagonists in sphere-forming assays, we have identified a very promising candidate compound: MG624. We found this compound to have a high selectivity for sphere-forming cells over non-sphere-forming cells in vitro, in a dose-dependent relationship, across a panel of cell lines as well as in patient-derived xenograft cells. This was validated in two ex vivo assays, where tumor formation was significantly delayed in mice injected with MG624-treated HCC1954 cells at both the IC50 and IC90 of the compound, indicating that MG624 does indeed target functional BTICs. MG624 was also found to synergize with both taxotere and doxorubicin chemotherapies in vitro, and shrink tumors in NOD/SCID mice when combined with taxotere in vivo. MG624 in combination with taxotere was found to induce apoptosis, and prevent cells from entering into the M-phase of the cell cycle. Interestingly, MG624 was found to eliminate intratumoral fibroblasts in combination with taxotere, despite taxotere being found to recruit fibroblasts to the tumor site when used on its own. Most importantly, the combination of MG624 and taxotere was found to significantly delay tumor progression/relapse in mice, indicating that MG624 may be an excellent candidate compound to one day be combined with chemotherapy to provide durable remission to breast cancer patients.en_US
dc.language.isoenen_US
dc.subjectBreast tumor initiating cells, nicotinic acetylcholine receptor antagonistsen_US
dc.titleTHE USE OF NICOTINIC ACETYLCHOLINE RECEPTOR ANTAGONISTS TO TARGET BREAST TUMOR-INITIATING CELLSen_US
dc.typeThesisen_US
dc.contributor.departmentMedical Sciencesen_US
dc.description.degreetypeThesisen_US
dc.description.degreeMaster of Science (MSc)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
THESIS JULY 2014.pdf
Access is allowed from: 2015-09-25
Master's Thesis4.34 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue