Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/16311
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorBrash, J.L.-
dc.contributor.advisorZhu, Shiping-
dc.contributor.authorRen, Yiran-
dc.date.accessioned2014-11-05T20:42:48Z-
dc.date.available2014-11-05T20:42:48Z-
dc.date.issued2014-
dc.identifier.urihttp://hdl.handle.net/11375/16311-
dc.description.abstractThis thesis work focused on polymer modification of silicon surface to improve its resistance to protein adsorption. Surface modification was achieved through surface-initiated atom transfer radical polymerization (SI-ATRP) grafting of poly(N,N-dimethyl amino) ethyl methacrylate (PDMAEMA). Since PDMAEMA is CO2-responsive, CO2 cleaning of the modified surface was also investigated. SI-ATRP was chosen to graft PDMAEMA brushes on silicon surface for high graft densities and its good control of polymer molecular weight and polydispersity. Surface characterization of PDMAEMA-modified silicon surfaces included hydrophilicity, layer thickness and surface chemical elemental composition. Protein adsorption experiments were carried out to evaluate the protein resistance of the modified surfaces. Albumin adsorption from single protein solution, as well as from human plasma, decreased significantly after PDMAEMA grafting, and the adsorbed amount decreased with increasing polymer chain length. The maximum decrease in adsorption of 90% relative to the unmodified silicon, was reached at a graft layer thickness of 40 nm (measured in the dry state). Protein resistance in plasma showed PDMAEMA -modified silicon provided significant resistance to most of the tested proteins. Compared to the PEO-modified surface, the PDMAEMA surface showed much greater resistance to albumin adsorption, but, surprisingly, it adsorbed relatively large amounts of vitronectin and prothrombin. Vitronectin may have been degraded in contact with PDMAEMA-modified surface. Also, it was the only surface out of the four, which adsorbed significant amounts of prothrombin. These unexpected observations indicate further investigation will be required to fully assess the protein-resistant properties of these PDMAEMA surfaces. CO2-induced protein desorption was also studied. Cleaning experiments were performed by bubbling CO2 into vials containing the protein-adsorbed PDMAEMA-modified surface after 2 h protein solution exposure. Radiolabelling of albumin showed that the CO2 cleaning effectiveness was related with the PDMAEMA thickness. It was found that a surface with graft thickness 20 nm (dry) responded more strongly to CO2 than one with 15 nm thickness. Western blotting results confirmed that CO2 contributed to protein desorption from the PDMAEMA surface.en_US
dc.language.isoenen_US
dc.subjectPDMAEMAen_US
dc.subjectcarbon dioxideen_US
dc.titlePoly(N,N-dimethylamino) ethyl methacrylate-grafted silicon: protein resistance and response to carbon dioxideen_US
dc.typeThesisen_US
dc.contributor.departmentBiomedical Engineeringen_US
dc.description.degreetypeThesisen_US
dc.description.degreeMaster of Applied Science (MASc)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Yvanne Ren Thesis FINAL.pdf
Open Access
Thesis1.99 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue