Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/16306
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorvon Mohrenschildt, Martin-
dc.contributor.authorBremer, Mark-
dc.date.accessioned2014-11-05T20:32:58Z-
dc.date.available2014-11-05T20:32:58Z-
dc.date.issued2014-11-
dc.identifier.urihttp://hdl.handle.net/11375/16306-
dc.description.abstractArti cial neural networks (ANNs) are a powerful processing units inspired by the human brain. They can be used in many applications due to their pattern classi cation abilities, ability to model complex nonlinear input-output mappings, and their ability to adapt and learn. The relatively new Smooth Variable Structure Filter (SVSF) has recently been applied to the training of feedforward multilayered neural networks. It has shown to have good accuracy and a fast speed of convergence. In this thesis, an engine fault detection system using an ANN will be implemented. ANNs are used in engine fault detection due to the high-noise environment that engine operate in. Additionally the fault detection system must work while the engine is mounted in a vehicle, which provide additional sources of noise. The SVSF training method is evaluated and compared to other traditional training methods. Also di erent accelerometer types are compared to evaluate whether lower cost accelerometers can be used to keep the system cost down. The system is tested by inducing a missing spark fault, a fault that has a complex fault signature and is di cult to detect, especially in an engine with a high number of cylinders.en_US
dc.language.isoenen_US
dc.subjectneural networksen_US
dc.subjectfault detectionen_US
dc.subjectSmooth Variable Structure Filteren_US
dc.subjectSVSFen_US
dc.titleImplementation of a Neural Network-based In-Vehicle Engine Fault Detection Systemen_US
dc.typeThesisen_US
dc.contributor.departmentComputing and Softwareen_US
dc.description.degreetypeThesisen_US
dc.description.degreeMaster of Applied Science (MASc)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
bremer_mark_r_201409_MASc.pdf
Open Access
30.53 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue