Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/16299
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorWilson, Christine-
dc.contributor.authorRobertson, Damien-
dc.date.accessioned2014-11-05T19:28:13Z-
dc.date.available2014-11-05T19:28:13Z-
dc.date.issued2014-11-
dc.identifier.urihttp://hdl.handle.net/11375/16299-
dc.description.abstractStar formation is a complex hierarchical process that witnesses the transfer of mass among a range of scales from large diffuse molecular clouds to crowded clumps and finally down to prestellar cores. The final stage of this process has prestellar cores actively accreting matter while undergoing gravitational collapse on their way to becoming main sequence stars. This thesis presents multi wavelength submillimeter observations of the Perseus molecular cloud using 160 μm, 250 μm, 350 μm, and 500 μm maps of thermal dust emission from the Herschel space observatory. Additionally C18O J = 3 → 2 spectral line emission is observed in four star forming clumps within Perseus using the James Clerk Maxwell Telescope. Spectral line emission allows for the separation of material along the line of sight. Prestellar core mass is derived from observational maps using various source finding algorithms. The mass is overestimated when compared to prestellar core mass found from spectral line data. This overestimation can be mitigated with careful selection of source finding algorithm and background removal. Further, the prestellar core mass derived from spectral line data was the closest match to the initial stellar mass function over dust maps. However, both the spectral line masses and dust map masses do not agree with the IMF confirming a star forming efficiency factor in the evolutionary step between prestellar core and main sequence star. Lastly, a filamentary analysis finds that high mass stars preferentially form in crowded regions close to, or contained within, filament structure.en_US
dc.language.isoenen_US
dc.subjectStar Formationen_US
dc.subjectGiant Molecular Clouden_US
dc.subjectPerseusen_US
dc.subjectInfrareden_US
dc.subjectRadioen_US
dc.subjectSource finding algorithmsen_US
dc.titlePrestellar Cores in Perseusen_US
dc.typeThesisen_US
dc.contributor.departmentPhysics and Astronomyen_US
dc.description.degreetypeThesisen_US
dc.description.degreeMaster of Science (MSc)en_US
dc.description.layabstractStar formation is a complex hierarchical process that witnesses the transfer of mass among a range of scales from large diffuse molecular clouds to crowded clumps and finally down to prestellar cores. The final stage of this process has prestellar cores actively accreting matter while undergoing gravitational collapse on their way to becoming main sequence stars. This thesis presents multi wavelength submillimeter observations of the Perseus molecular cloud using 160 μm, 250 μm, 350 μm, and 500 μm maps of thermal dust emission from the Herschel space observatory. Additionally carbon monoxide spectral line emission is observed in four star forming clumps within Perseus using the James Clerk Maxwell Telescope. Spectral line emission allows for the separation of material along the line of sight. Prestellar core mass is derived from observational maps using various source finding algorithms. The mass is overestimated when compared to prestellar core mass found from spectral line data. This overestimation can be mitigated with careful selection of source finding algorithm and background removal. Further, the prestellar core mass derived from spectral line data was the closest match to the initial stellar mass function over dust maps. However, both the spectral line masses and dust map masses do not agree with the IMF confirming a star forming efficiency factor in the evolutionary step between prestellar core and main sequence star. Lastly, a filamentary analysis finds that high mass stars preferentially form in crowded regions close to, or contained within, filament structure.en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
thesis.pdf
Open Access
Enitre thesis2.33 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue