Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/16295
Title: Neural responses demonstrate the dynamicity of speech perception
Authors: Kramer, Samantha
Advisor: Connolly, John F.
Moro, Anna L.
Department: Cognitive Science of Language
Keywords: N100, P200, PMN, phonological mapping negativity, phonology, EEG, elecroencephalography, ERP, event-related potentials, subphonemic, cues, features, spoken word recognition
Publication Date: Nov-2014
Abstract: Spoken language is produced with a great deal of variability with which listeners must be able to cope. One source of variation is coarticulation, which is due to articulatory planning and transitions between segments. Recently, the temporal features of coarticulation were investigated during a picture/spoken-word matching task by using spliced stimuli carrying either congruent or incongruent subphonemic cues at the CV juncture (Archibald & Joanisse, 2011). ERPs were recorded with attention paid to the phonological mapping negativity (PMN) (Connolly & Phillips, 1994; Newman & Connolly, 2004) – a prelexical response sensitive to violations of phonological expectations. Results found that the PMN varied in response to coarticulation violations and concluded that phonetic features in spoken words influence prelexical processing during word recognition. Using a written-/spoken-word paradigm, Arbour, 2012 controlled phonological shape by using onsets that were either fricatives or stops, hypothesizing that coarticulatory information would be differentially processed due to their temporal differences. Findings supported the PMN’s sensitivity to coarticulation but also showed that temporal and physical differences between onsets modulated the effect. These results raise the question of whether acoustic distance between vowels will modulate prelexical processing of speech as reflected by the PMN amplitude: the focus of the current study. Words were organized into minimal sets such that all onset/coda combinations appeared with each vowel provided that English words resulted. Vowels were one of /i, u, æ, ɑ/, maximizing acoustic distance (height and backness). Data from 20 subjects indicate that the PMN is sensitive to the degree of difference between the original and post-splice vowels. When the number of distinctive features changing is greater, the result is an earlier, more robust PMN. This suggests that the rate of speech recognition is not static but dynamic, and is dependent on likeness of subphonemic features.
URI: http://hdl.handle.net/11375/16295
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Kramer_Samantha_E_2014September_MSc.pdf
Access is allowed from: 2015-09-22
full thesis pdf15.33 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue